ترغب بنشر مسار تعليمي؟ اضغط هنا

The lattice Landau gauge photon propagator for 4D compact QED

74   0   0.0 ( 0 )
 نشر من قبل Orlando Oliveira
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we report on the Landau gauge photon propagator computed for pure gauge 4D compact QED in the confined and deconfined phases and for large lattices volumes: $32^4$, $48^4$ and $96^4$. In the confined phase, compact QED develops mass scales that render the propagator finite at all momentum scales and no volume dependence is observed for the simulations performed. Furthermore, for the confined phase the propagator is compatible with a Yukawa massive type functional form. For the deconfined phase the photon propagator seems to approach a free field propagator as the lattice volume is increased. In both cases, we also investigate the static potential and the average value of the number of Dirac strings in the gauge configurations $m$. In the confined phase the mass gap translates into a linearly growing static potential, while in the deconfined phase the static potential approaches a constant at large separations. Results shows that $m$ is, at least, one order of magnitude larger in the confined phase and confirm that the appearance of a confined phase is connected with the topology of the gauge group.

قيم البحث

اقرأ أيضاً

The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $T_c$ and for the various Matsubara freq uencies. Significant differences between the functional behaviour below and above $T_c$ are observed both for the quark wave function and the running quark mass. The results for the running quark mass indicate a strong link between gluon dynamics, the mechanism for chiral symmetry breaking and the deconfinement mechanism. For temperatures above $T_c$ and for low momenta, our results support also a description of quarks as free quasi-particles.
Lattice results for the gluon propagator in SU(2) pure gauge theory obtained on large lattices are presented. Simulated annealing is used throughout to fix the Landau gauge. We concentrate on checks for Gribov copy effects and for scaling properties. Our findings are similar to the ones in the SU(3) case, supporting the decoupling-type infrared behaviour of the gluon propagator.
We study the Landau gauge quark propagator, at finite temperature, using quenched lattice simulations. Special focus is given to the behaviour of the momentum space form factors across the confinement-deconfinement phase transition.
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing ``finite-lattice logs. We find agreement with the one-loop result from standard Lattice Perturbation Theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
We report on results for the Landau gauge gluon propagator computed from large statistical ensembles and look at the compatibility of the results with the Gribov-Zwanziger tree level prediction for its refined and very refine
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا