ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Baseline for Sentence-level Relation Extraction

100   0   0.0 ( 0 )
 نشر من قبل Wenxuan Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence. Many efforts have been devoted to this problem, while the best performing methods are still far from perfect. In this paper, we revisit two problems that affect the performance of existing RE models, namely entity representation and noisy or ill-defined labels. Our improved baseline model, incorporated with entity representations with typed markers, achieves an F1 of 74.6% on TACRED, significantly outperforms previous SOTA methods. Furthermore, the presented new baseline achieves an F1 of 91.1% on the refined Re-TACRED dataset, demonstrating that the pre-trained language models achieve unexpectedly high performance on this task. We release our code to the community for future research.

قيم البحث

اقرأ أيضاً

105 - Seongsik Park , Harksoo Kim 2021
Sentence-level relation extraction mainly aims to classify the relation between two entities in a sentence. The sentence-level relation extraction corpus often contains data that are difficult for the model to infer or noise data. In this paper, we p ropose a curriculum learning-based relation extraction model that splits data by difficulty and utilizes them for learning. In the experiments with the representative sentence-level relation extraction datasets, TACRED and Re-TACRED, the proposed method obtained an F1-score of 75.0% and 91.4% respectively, which are the state-of-the-art performance.
106 - Ruotian Ma , Tao Gui , Linyang Li 2021
Distant supervision for relation extraction provides uniform bag labels for each sentence inside the bag, while accurate sentence labels are important for downstream applications that need the exact relation type. Directly using bag labels for senten ce-level training will introduce much noise, thus severely degrading performance. In this work, we propose the use of negative training (NT), in which a model is trained using complementary labels regarding that ``the instance does not belong to these complementary labels. Since the probability of selecting a true label as a complementary label is low, NT provides less noisy information. Furthermore, the model trained with NT is able to separate the noisy data from the training data. Based on NT, we propose a sentence-level framework, SENT, for distant relation extraction. SENT not only filters the noisy data to construct a cleaner dataset, but also performs a re-labeling process to transform the noisy data into useful training data, thus further benefiting the models performance. Experimental results show the significant improvement of the proposed method over previous methods on sentence-level evaluation and de-noise effect.
112 - Chris Quirk , Hoifung Poon 2016
The growing demand for structured knowledge has led to great interest in relation extraction, especially in cases with limited supervision. However, existing distance supervision approaches only extract relations expressed in single sentences. In gen eral, cross-sentence relation extraction is under-explored, even in the supervised-learning setting. In this paper, we propose the first approach for applying distant supervision to cross- sentence relation extraction. At the core of our approach is a graph representation that can incorporate both standard dependencies and discourse relations, thus providing a unifying way to model relations within and across sentences. We extract features from multiple paths in this graph, increasing accuracy and robustness when confronted with linguistic variation and analysis error. Experiments on an important extraction task for precision medicine show that our approach can learn an accurate cross-sentence extractor, using only a small existing knowledge base and unlabeled text from biomedical research articles. Compared to the existing distant supervision paradigm, our approach extracted twice as many relations at similar precision, thus demonstrating the prevalence of cross-sentence relations and the promise of our approach.
144 - Wang Xu , Kehai Chen , Tiejun Zhao 2021
Document-level relation extraction (DocRE) models generally use graph networks to implicitly model the reasoning skill (i.e., pattern recognition, logical reasoning, coreference reasoning, etc.) related to the relation between one entity pair in a do cument. In this paper, we propose a novel discriminative reasoning framework to explicitly model the paths of these reasoning skills between each entity pair in this document. Thus, a discriminative reasoning network is designed to estimate the relation probability distribution of different reasoning paths based on the constructed graph and vectorized document contexts for each entity pair, thereby recognizing their relation. Experimental results show that our method outperforms the previous state-of-the-art performance on the large-scale DocRE dataset. The code is publicly available at https://github.com/xwjim/DRN.
Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper , we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا