ترغب بنشر مسار تعليمي؟ اضغط هنا

On enhanced sensing of chiral molecules in optical cavities

128   0   0.0 ( 0 )
 نشر من قبل Ivan Fernandez-Corbaton
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The differential response of chiral molecules to incident left- and right- handed circularly polarized light is used for sensing the handedness of molecules. Currently, significant effort is directed towards enhancing weak differential signals from the molecules, with the goal of extending the capabilities of chiral spectrometers to lower molecular concentrations or small analyte volumes. Previously, optical cavities for enhancing vibrational circular dichroism have been introduced. Their enhancements are mediated by helicity-preserving cavity modes which maintain the handedness of light due to their degenerate TE and TM components. In this article, we simplify the design of the cavity, and numerically compare it with the previous one using an improved model for the response of chiral molecules. We use parameters of molecular resonances to show that the cavities are capable of bringing the vibrational circular dichroism signal over the detection threshold of typical spectrometers for concentrations that are one to three orders of magnitude smaller than those needed without the cavities, for a fixed analyte volume. Frequency resolutions of current spectrometers result in enhancements of more than one order (two orders) of magnitude for the new (previous) design. With improved frequency resolution, the new design achieves enhancements of three orders of magnitude. We show that the TE/TM degeneracy in perfectly helicity preserving modes is lifted by factors that are inherent to the cavities. More surprisingly, this degeneracy is also lifted by the molecules themselves due to their lack of electromagnetic duality symmetry, that is, due to the partial change of helicity during the light-molecule interactions.



قيم البحث

اقرأ أيضاً

Researchers routinely sense molecules by their infrared vibrational fingerprint absorption resonances. In addition, the dominant handedness of chiral molecules can be detected by circular dichroism (CD), the normalized difference between their optica l response to incident left- and right- handed circularly polarized light. Here, we introduce a cavity composed of two parallel arrays of helicity-preserving silicon disks that allows to enhance the CD signal by more than two orders of magnitude for a given molecule concentration and given thickness of the cell containing the molecules. The underlying principle is first-order diffraction into helicity-preserving modes with large transverse momentum and long lifetimes. In sharp contrast, in a conventional Fabry-Perot cavity, each reflection flips the handedness of light, leading to large intensity enhancements inside the cavity, yet to smaller CD signals than without the cavity.
We derive a set of design requirements that lead to structures suitable for molecular circular dichroism (CD) enhancement. Achirality of the structure and two suitably selected sequentially incident beams of opposite helicity ensures that the CD sign al only depends on the chiral absorption properties of the molecules, and not on the achiral ones. Under this condition, a helicity preserving structure, which prevents the coupling of the two polarization handednesses, maximizes the enhancement of the CD signal for a given ability of the structure to enhance the field. When the achirality and helicity preservation requirements are met, the enhancement of the CD signal is directly related to the enhancement of the field. Next, we design an exemplary structure following the requirements. The considered system is a planar array of silicon cylinders under normally incident plane-wave illumination. Full-wave numerical calculations show that the enhancement of the transmission CD signal is between 6.5 and 3.75 for interaction lengths between 1.25 and 3 times the height of the cylinders.
Chirality is a ubiquitous phenomenon in the natural world. Many biomolecules without inversion symmetry such as amino acids and sugars are chiral molecules. Measuring and controlling molecular chirality at a high precision down to the atomic scale ar e highly desired in physics, chemistry, biology, and medicine, however, have remained challenging. Herein, we achieve all-optical reconfigurable chiral meta-molecules experimentally using metallic and dielectric colloidal particles as artificial atoms or building blocks to serve at least two purposes. One is that the on-demand meta-molecules with strongly enhanced optical chirality are well-suited as substrates for surface-enhanced chiroptical spectroscopy of chiral molecules and as active components in optofluidic and nanophotonic devices. The other is that the bottom-up-assembled colloidal meta-molecules provide microscopic models to better understand the origin of chirality in the actual atomic and molecular systems. Keywords: opto-thermoelectric tweezers; optical chirality; metamolecules; bottom-up assembly
Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of textit{phonon-stimulated Raman scattering} and an counter-intuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this novel QED framework opens a venue to analyze the correlations of photons emitted at a plasmonic cavity
Chirality is ubiquitous in nature and fundamental in science, from particle physics to metamaterials.The most established technique of chiral discrimination - photoabsorption circular dichroism - relies on the magnetic properties of a chiral medium a nd yields an extremely weak chiral response. We propose and demonstrate a new, orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexitation circular dichroism. It does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation without the aid of further chiral interactions using linearly polarized laser pulses. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا