ترغب بنشر مسار تعليمي؟ اضغط هنا

New Formulation for Coloring Circle Graphs and its Application to Capacitated Stowage Stack Minimization

76   0   0.0 ( 0 )
 نشر من قبل Tomomi Matsui
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A circle graph is a graph in which the adjacency of vertices can be represented as the intersection of chords of a circle. The problem of calculating the chromatic number is known to be NP-complete, even on circle graphs. In this paper, we propose a new integer linear programming formulation for a coloring problem on circle graphs. We also show that the linear relaxation problem of our formulation finds the fractional chromatic number of a given circle graph. As a byproduct, our formulation gives a polynomial-sized linear programming formulation for calculating the fractional chromatic number of a circle graph. We also extend our result to a formulation for a capacitated stowage stack minimization problem.



قيم البحث

اقرأ أيضاً

A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wirel ess networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
303 - Ranveer Singh , R. B. Bapat 2017
Let $G$ be a graph(directed or undirected) having $k$ number of blocks. A $mathcal{B}$-partition of $G$ is a partition into $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is induced subgraph of $B_i$ for $i=1,2 ,hdots,k.$ The terms $prod_{i=1}^{k}det(hat{B}_i), prod_{i=1}^{k}text{per}(hat{B}_i)$ are det-summands and per-summands, respectively, corresponding to the $mathcal{B}$-partition. The determinant and permanent of a graph having no loops on its cut-vertices is equal to summation of det-summands and per-summands, respectively, corresponding to all possible $mathcal{B}$-partitions. Thus, in this paper we calculate determinant and permanent of some graphs, which include block graph with negatives cliques, signed unicyclic graph, mix complete graph, negative mix complete graph, and star mix block graphs.
An incidence of an undirected graph G is a pair $(v,e)$ where $v$ is a vertex of $G$ and $e$ an edge of $G$ incident with $v$. Two incidences $(v,e)$ and $(w,f)$ are adjacent if one of the following holds: (i) $v = w$, (ii) $e = f$ or (iii) $vw = e$ or $f$. An incidence coloring of $G$ assigns a color to each incidence of $G$ in such a way that adjacent incidences get distinct colors. In 2005, Hosseini Dolama emph{et al.}~citep{ds05} proved that every graph with maximum average degree strictly less than $3$ can be incidence colored with $Delta+3$ colors. Recently, Bonamy emph{et al.}~citep{Bonamy} proved that every graph with maximum degree at least $4$ and with maximum average degree strictly less than $frac{7}{3}$ admits an incidence $(Delta+1)$-coloring. In this paper we give bounds for the number of colors needed to color graphs having maximum average degrees bounded by different values between $4$ and $6$. In particular we prove that every graph with maximum degree at least $7$ and with maximum average degree less than $4$ admits an incidence $(Delta+3)$-coloring. This result implies that every triangle-free planar graph with maximum degree at least $7$ is incidence $(Delta+3)$-colorable. We also prove that every graph with maximum average degree less than 6 admits an incidence $(Delta + 7)$-coloring. More generally, we prove that $Delta+k-1$ colors are enough when the maximum average degree is less than $k$ and the maximum degree is sufficiently large.
For a graph $G$ and integer $qgeq 2$, an edge $q$-coloring of $G$ is an assignment of colors to edges of $G$, such that edges incident on a vertex span at most $q$ distinct colors. The maximum edge $q$-coloring problem seeks to maximize the number of colors in an edge $q$-coloring of a graph $G$. The problem has been studied in combinatorics in the context of {em anti-Ramsey} numbers. Algorithmically, the problem is NP-Hard for $qgeq 2$ and assuming the unique games conjecture, it cannot be approximated in polynomial time to a factor less than $1+1/q$. The case $q=2$, is particularly relevant in practice, and has been well studied from the view point of approximation algorithms. A $2$-factor algorithm is known for general graphs, and recently a $5/3$-factor approximation bound was shown for graphs with perfect matching. The algorithm (which we refer to as the matching based algorithm) is as follows: Find a maximum matching $M$ of $G$. Give distinct colors to the edges of $M$. Let $C_1,C_2,ldots, C_t$ be the connected components that results when M is removed from G. To all edges of $C_i$ give the $(|M|+i)$th color. In this paper, we first show that the approximation guarantee of the matching based algorithm is $(1 + frac {2} {delta})$ for graphs with perfect matching and minimum degree $delta$. For $delta ge 4$, this is better than the $frac {5} {3}$ approximation guarantee proved in {AAAP}. For triangle free graphs with perfect matching, we prove that the approximation factor is $(1 + frac {1}{delta - 1})$, which is better than $5/3$ for $delta ge 3$.
In this paper we have used one 2 variable Boolean function called Rule 6 to define another beautiful transformation named as Extended Rule-6. Using this function we have explored the algebraic beauties and its application to an efficient Round Robin Tournament (RRT) routine for 2k (k is any natural number) number of teams. At the end, we have thrown some light towards any number of teams of the form nk where n, k are natural numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا