ﻻ يوجد ملخص باللغة العربية
In this study, we examine the superconducting instability of a quasi-one-dimensional lattice in the Hubbard model based on the random-phase approximation (RPA) and the fluctuation exchange (FLEX) approximation. We find that a spin-singlet pair density wave (PDW-singlet) with a center-of-mass momentum of $2k_F$ can be stabilized when the one-dimensionality becomes prominent toward the perfect nesting of the Fermi surface. The obtained pair is a mixture of even-frequency and odd-frequency singlet ones. The dominant even-frequency component does not have nodal lines on the Fermi surface. This PDW-singlet state is more favorable as compared to RPA when self-energy correction is introduced in the FLEX approximation.
We investigate the Hubbard model on a two-dimensional square lattice by the perturbation expansion to the fourth order in the on-site Coulomb repulsion U. Numerically calculating all diagrams up to the fourth order in self-energy, we examine the conv
Following the discovery of superconductivity in the cuprates and the seminal work by Anderson, the theoretical efforts to understand high-temperature superconductivity have been focusing to a large extent on a simple model: the one-band Hubbard model
Pair density wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi
Upper critical field, H_c2, in quasi-1D superconductors is investigated by the weak coupling renormalization group technique. It is shown that H_c2 greatly exceeds not only the Pauli limit, but also the conventional paramagnetic limit of the Flude-Fe