ترغب بنشر مسار تعليمي؟ اضغط هنا

Deflection of light rays by spherically symmetric black hole in dispersive medium

191   0   0.0 ( 0 )
 نشر من قبل Oleg Tsupko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Oleg Yu. Tsupko




اسأل ChatGPT حول البحث

The influence of the medium on the gravitational deflection of light rays is widely discussed in literature for the simplest non-trivial case: cold non-magnetized plasma. In this article, we generalize these studies to the case of an arbitrary transparent dispersive medium with a given refractive index. We calculate the deflection angle of light ray moving in a general spherically symmetric metric in the presence of medium with the spherically symmetric refractive index. The equation for the radius of circular light orbits is also derived. We discuss in detail the properties of these results and various special cases. In particular, we show that multiplying the refractive index by a constant does not affect the deflection angle and radius of circular orbits. At the same time, the presence of dispersion makes the trajectories different from the case of vacuum even in spatially homogeneous medium. As one of the applications of our results, we calculate the correction to the angle of vacuum gravitational deflection for the case when a massive object is surrounded by homogeneous but dispersive medium. As another application, we present the calculation of the shadow of a black hole surrounded by medium with arbitrary refractive index. Our results can serve as a basis for studies of various plasma models beyond the cold plasma case.



قيم البحث

اقرأ أيضاً

71 - Ken Matsuno 2020
We study motions of photons in an unmagnetized cold homogeneous plasma medium in the five-dimensional charged static squashed Kaluza-Klein black hole spacetime. In this case, a photon behaves as a massive particle in a four-dimensional spherically sy mmetric spacetime. We consider the light deflection by the squashed Kaluza-Klein black hole surrounded by the plasma in a weak-field limit. We derive corrections of the deflection angle to general relativity, which are related to the size of the extra dimension, the charge of the black hole and the ratio between the plasma and the photon frequencies.
155 - J. Ziprick , G. Kunstatter 2008
We perform a numerical study of black hole formation from the spherically symmetric collapse of a massless scalar field. The calculations are done in Painleve-Gullstrand (PG) coordinates that extend across apparent horizons and allow the numerical ev olution to proceed until the onset of singularity formation. We generate spacetime maps of the collapse and illustrate the evolution of apparent horizons and trapping surfaces for various initial data. We also study the critical behaviour and find the expected Choptuik scaling with universal values for the critical exponent and echoing period consistent with the accepted values of $gamma=0.374$ and $Delta = 3.44$, respectively. The subcritical curvature scaling exhibits the expected oscillatory behaviour but the form of the periodic oscillations in the supercritical mass scaling relation, while universal with respect to initial PG data, is non-standard: it is non-sinusoidal with large amplitude cusps.
We present a solution of Einstein equations with quintessential matter surrounding a $d$-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole an d find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole, we learn that the influences by the state parameter of the quintessence on Hawking radiation are different.
We consider the new horizon first law in $f(R)$ theory with general spherically symmetric black hole. We derive the general formulas to computed the entropy and energy of the black hole. For applications, some nontrivial black hole solutions in some popular $f(R)$ theories are investigated, the entropies and the energies of black holes in these models are first calculated.
With the assumptions of a quartic scalar field, finite energy of the scalar field in a volume, and vanishing radial component of 4-current at infinity, an exact static and spherically symmetric hairy black hole solution exists in the framework of Hor ndeski theory with parameter $Q$, which encompasses the Schwarzschild black hole ($Q=0$). We obtain the axially symmetric counterpart of this hairy solution, namely the rotating Horndeski black hole, which contains as a special case the Kerr black hole ($Q=0$). Interestingly, for a set of parameters ($M, a$, and $Q$), there exists an extremal value of the parameter $Q=Q_{e}$, which corresponds to an extremal black hole with degenerate horizons, while for $Q<Q_{e}$, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for $Q>Q_{e}$. We investigate the effect of the $Q$ on the rotating black hole spacetime geometry and analytically deduce corrections to the light deflection angle from the Kerr and nonrotating Horndeski gravity black hole values. For the S2 source star, we calculate the deflection angle for the Sgr A* model of rotating Horndeski gravity black hole for both prograde and retrograde photons and show that it is larger than the Kerr black hole value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا