ترغب بنشر مسار تعليمي؟ اضغط هنا

Kraus operators and symmetric groups

68   0   0.0 ( 0 )
 نشر من قبل Alessia Cattabriga
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the contest of open quantum systems, we study a class of Kraus operators whose definition relies on the defining representation of the symmetric groups. We analyze the induced orbits as well as the limit set and the degenerate cases.



قيم البحث

اقرأ أيضاً

The S-matrices corresponding to PT-symmetric rho-perturbed operators are defined and calculated by means of an approach based on an operator-theoretical interpretation of the Lax-Phillips scattering theory.
99 - Stephen P. Shipman 2017
This work constructs a class of non-symmetric periodic Schrodinger operators on metric graphs (quantum graphs) whose Fermi, or Floquet, surface is reducible. The Floquet surface at an energy level is an algebraic set that describes all complex wave v ectors admissible by the periodic operator at the given energy. The graphs in this study are obtained by coupling two identical copies of a periodic quantum graph by edges to form a bilayer graph. Reducibility of the Floquet surface for all energies ensues when the coupling edges have potentials belonging to the same asymmetry class. The notion of asymmetry class is defined in this article through the introduction of an entire spectral A-function $a(lambda)$ associated with a potential--two potentials belong to the same asymmetry class if their A-functions are identical. Symmetric potentials correspond to $a(lambda)equiv0$. If the potentials of the connecting edges belong to different asymmetry classes, then typically the Floquet surface is not reducible. An exception occurs when two copies of certain bipartite graphs are coupled; the Floquet surface in this case is always reducible. This includes AA-stacked bilayer graphene.
Generalized PT-symmetric operators acting an a Hilbert space $mathfrak{H}$ are defined and investigated. The case of PT-symmetric extensions of a symmetric operator $S$ is investigated in detail. The possible application of the Lax-Phillips scatterin g methods to the investigation of PT-symmetric operators is illustrated by considering the case of 0-perturbed operators.
In recent years, many natural Hamiltonian systems, classical and quantum, with constants of motion of high degree, or symmetry operators of high order, have been found and studied. Most of these Hamiltonians, in the classical case, can be included in the family of extended Hamiltonians, geometrically characterized by the structure of warped manifold of their configuration manifold. For the extended manifolds, the characteristic constants of motion of high degree are polynomial in the momenta of determined form. We consider here a different form of the constants of motion, based on the factorization procedure developed by S. Kuru, J. Negro and others. We show that an important subclass of the extended Hamiltonians admits factorized constants of motion and we determine their expression. The classical constants may be non-polynomial in the momenta, but the factorization procedure allows, in a type of extended Hamiltonians, their quantization via shift and ladder operators, for systems of any finite dimension.
248 - Boris F. Samsonov 2012
Being chosen as a differential operator of a special form, metric $eta$ operator becomes unitary equivalent to a one-dimensional Hermitian Hamiltonian with a natural supersymmetric structure. We show that fixing the superpartner of this Hamiltonian p ermits to determine both the metric operator and corresponding non-Hermitian Hamiltonian. Moreover, under an additional restriction on the non-Hermitian Hamiltonian, it becomes a superpartner of another Hermitian Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا