ﻻ يوجد ملخص باللغة العربية
The track event theory (TET) has been developed in recent years as an alternative to the phenomenological linear-quadratic model for cell survival under exposure to ionizing radiation, particularly for heavy charged particles. The TET is based on a few simple model assumptions including the possibility to derive some of the model parameters from nanodosimetry. This work intends to carve out more clearly the basic assumptions behind the TET and to critically review the resulting mathematical model equations. It is demonstrated that the model assumptions of Poisson distribution and statistical independence of the frequency distributions of so-called one-track and two-track events follow from the Poisson distribution of the number of tracks affecting the considered target volume. It is also shown that the modified TET model equation used in the literature for consideration of repair is inconsistent with the model assumptions and requires an additional model parameter. Furthermore, the derivation of the model parameters from nanodosimetric properties of particle track structure is revealed to lead to a pure exponential dose dependence when the potentially large number of relevant nanometric target volumes inside a cell nucleus is accounted for.
This work aims at carving out more clearly the basic assumptions behind the track-event theory (TET) and its derivate radiation action model based on nanodosimetry (RAMN) by clearly distinguishing between effects of tracks at the cellular level and t
Beams of $^{4}$He and $^{16}$O nuclei are considered for ion-beam cancer therapy as alternative options to protons and $^{12}$C nuclei. Spread-out Bragg peak (SOBP) distributions of physical dose and relative biological effectiveness for 10% survival
The quantum adiabatic theorem states that if a quantum system starts in an eigenstate of the Hamiltonian, and this Hamiltonian varies sufficiently slowly, the system stays in this eigenstate. We investigate experimentally the conditions that must be
In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a sy
We follow the evolution of the Ionization Potential (IP) for the paradigmatic quasi-one-dimensional trans-acetylene family of conjugated molecules, from short to long oligomers and to the infinite polymer trans-poly-acetylene (TPA). Our results for s