ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroluminescence yield in pure krypton

77   0   0.0 ( 0 )
 نشر من قبل Cristina M Bernardes Monteiro
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The krypton electroluminescence yield was studied, at room temperature, as a function of electric field in the gas scintillation gap. A large area avalanche photodiode has been used to allow the simultaneous detection of the electroluminescence pulses as well as the direct interaction of x-rays, the latter being used as a reference for the calculation of the number of charge carriers produced by the electroluminescence pulses and, thus, the determination of the number of photons impinging the photodiode. An amplification parameter of 113 photons per kV per drifting electron and a scintillation threshold of 2.7 Td ( 0.7 kV/cm/bar at 293 K ) was obtained, in good agreement with the simulation data reported in the literature. On the other hand, the ionisation threshold in krypton was found to be around 13.5 Td (3.4 kV/cm/bar), less than what had been obtained by the most recent simulation work-package. The krypton amplification parameter is about 80% and 140% of those measured for xenon and argon, respectively. The electroluminescence yield in krypton is of great importance for modeling krypton-based double-phase or high-pressure gas detectors, which may be used in future rare event detection experiments.



قيم البحث

اقرأ أيضاً

High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffusion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the scintillation region, the EL yield is lowered by ~ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the ${}^{136}$Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionis ation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO${}_{2}$, CH${}_{4}$ and CF${}_{4}$) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/$sqrt{mathrm{m}}$ for pure xenon down to 2.5 mm/$sqrt{mathrm{m}}$ using additive concentrations of about 0.05%, 0.2% and 0.02% for CO${}_{2}$, CH${}_{4}$ and CF${}_{4}$, respectively. Our results show that CF${}_{4}$ admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH${}_{4}$ presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO${}_{2}$ and CH${}_{4}$ show potential as molecular additives in a large xenon TPC, CH${}_{4}$ showing the best performance and stability to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%.
The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the propo sed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.
Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in t he VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.
71 - Rui Yan , Zhou Wang , Xiangyi Cui 2021
An efficient cryogenic distillation system was designed and constructed for PandaX-4T dark matter detector based on the McCabe-Thiele (M-T) method and the conservation of mass and energy. This distillation system is designed to reduce the concentrati on of krypton in commercial xenon from 5X$10^{-7}$ mol/mol to $10^{-14}$ mol/mol with 99% xenon collection efficiency at a maximum flow rate of 10 kg/h. The offline distillation operation has been completed and 5.75 tons of ultra-high purity xenon was produced, which is used as the detection medium in PandaX-4T detector. The krypton concentration of the product xenon is measured with an upper limit of 8.0 ppt. The stability and purification performance of the cryogenic distillation system are studied by analyzing the experimental data, which is important for theoretical research and distillation operation optimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا