ﻻ يوجد ملخص باللغة العربية
Thermal transport in topologically-ordered phases of matter provides valuable insights as it can detect the charge-neutral quasiparticles that would not directly couple to electromagnetic probes. An important example is edge heat transport of Majorana fermions in a chiral spin liquid, which leads to a half-quantized thermal Hall conductivity. This signature is precisely what has recently been measured in $alpha$-RuCl$_3$ under external magnetic fields. The plateau-like behavior of the half-quantized thermal Hall conductivity as a function of external magnetic field, and the peculiar sign change depending on the magnetic field orientation, has been proposed as strong evidence for the non-Abelian Kitaev spin liquid. Alternatively, for in-plane magnetic fields, it was theoretically shown that such a sign structure can also arise from topological magnons in the field-polarized state. In this work, we investigate the full implications of topological magnons as heat carriers on thermal transport measurements. We first prove analytically that for any commensurate order with a finite magnetic unit cell, reversing the field direction leads to a sign change in the magnon thermal Hall conductivity in two-dimensional systems. We verify this proof numerically with nontrivial magnetic orders as well as the field-polarized state in Kitaev magnets subjected to an in-plane field. In the case of a tilted magnetic field, whereby there exist both finite in-plane and out-of-plane field components, we find that the plateau-like behavior of the thermal Hall conductivity and the sign change upon reversing the in-plane component of the magnetic field arise in the partially-polarized state, as long as the in-plane field contribution to the Zeeman energy is significant. While these results are consistent with the experimental observations, we comment on other aspects requiring investigation in future studies.
Recently, the observation of large thermal Hall conductivities in correlated insulators with no apparent broken symmetry have generated immense interest and debates on the underlying ground states. Here, considering frustrated magnets with bond-depen
We study periodically driven pure Kitaev model and ferromagnetic phase of the Kitaev-Heisenberg model on the honeycomb lattice by off-resonant linearly and circularly-polarized lights at zero magnetic field. Using a combination of linear spin wave an
In the field of quantum magnetism, the advent of numerous spin-orbit assisted Mott insulating compounds, such as the family of Kitaev materials, has led to a growing interest in studying general spin models with non-diagonal interactions that do not
We study the Kitaev-Heisenberg-$Gamma$-$Gamma$ model that describes the magnetism in strong spin-orbit coupled honeycomb lattice Mott insulators. In strong $[111]$ magnetic fields that bring the system into the fully polarized paramagnetic phase, we
We analyze the magnon excitations in pyrochlore iridates with all-in-all-out (AIAO) antiferromagnetic order, focusing on their topological features. We identify the magnetic point group symmetries that protect the nodal-line band crossings and triple