ﻻ يوجد ملخص باللغة العربية
In this work we study 35 stellar clusters in the Small Magellanic Cloud (SMC) in order to provide their mean metallicities and ages. We also provide mean metallicities of the fields surrounding the clusters. We used Stromgren photometry obtained with the 4.1 m SOAR telescope and take advantage of $(b - y)$ and $m1$ colors for which there is a metallicity calibration presented in the literature. The spatial metallicity and age distributions of clusters across the SMC are investigated using the results obtained by Stromgren photometry. We confirm earlier observations that younger, more metal-rich star clusters are concentrated in the central regions of the galaxy, while older, more metal-poor clusters are located farther from the SMC center. We construct the age-metallicity relation for the studied clusters and find good agreement with theoretical models of chemical enrichment, and with other literature age and metallicity values for those clusters. We also provide the mean metallicities for old and young populations of the field stars surrounding the clusters, and find the latter to be in good agreement with recent studies of the SMC Cepheid population. Finally, the Stromgren photometry obtained for this study is made publicly available.
Colour-magnitude diagrams are presented for the first time for L32, L38, K28 (L43), K44 (L68) and L116, which are clusters projected onto the outer parts of the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system $C$
We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully-automated method developed by Bitsakis et al. (2017).
The Bar is the most productive region of the Small Magellanic Cloud in terms of star formation but also the least studied one. In this paper we investigate the star formation history of two fields located in the SW and in the NE portion of the Bar us
We derive the star formation history in four regions of the Small Magellanic Cloud (SMC) using the deepest VI color-magnitude diagrams (CMDs) ever obtained for this galaxy. The images were obtained with the Advanced Camera for Surveys onboard the Hub
Observations of Young Star Cluster ({bf YSC}) systems in interacting galaxies are reviewed with particular emphasis on their Luminosity Functions ({bf LF}) and colour distributions. A few spectroscopic abundance measurements are available. They will