ﻻ يوجد ملخص باللغة العربية
In this paper, we propose multi-input multi-output (MIMO) beamforming designs towards joint radar sensing and multi-user communications. We employ the Cramer-Rao bound (CRB) as a performance metric of target estimation, under both point and extended target scenarios. We then propose minimizing the CRB of radar sensing while guaranteeing a pre-defined level of signal-to-interference-plus-noise ratio (SINR) for each communication user. For the single-user scenario, we derive a closed form for the optimal solution for both cases of point and extended targets. For the multi-user scenario, we show that both problems can be relaxed into semidefinite programming by using the semidefinite relaxation approach, and prove that the global optimum can always be obtained. Finally, we demonstrate numerically that the globally optimal solutions are reachable via the proposed methods, which provide significant gains in target estimation performance over state-of-the-art benchmarks.
In this paper, we firstly overview the application scenarios and the research progress in the area of communication and radar spectrum sharing (CRSS). We then propose a novel transceiver architecture and frame structure for a dual-functional radar-co
Future wireless communication systems are expected to explore spectral bands typically used by radar systems, in order to overcome spectrum congestion of traditional communication bands. Since in many applications radar and communication share the sa
A novel dual-function radar communication (DFRC) system is proposed, that achieves high target resolution and high communication rate. It consists of a multiple-input multiple-output (MIMO) radar, where only a small number of antennas are active in e
In this article, we study the joint communication and sensing (JCAS) paradigm in the context of millimeter-wave (mm-wave) mobile communication networks. We specifically address the JCAS challenges stemming from the full-duplex operation and from the
Rate-Splitting Multiple Access (RSMA), relying on multi-antenna Rate-Splitting (RS) techniques, has emerged as a powerful strategy for multi-user multi-antenna systems. In this paper, RSMA is introduced as a unified multiple access for multi-antenna