ﻻ يوجد ملخص باللغة العربية
Chimera states have attracted significant attention as symmetry-broken states exhibiting the unexpected coexistence of coherence and incoherence. Despite the valuable insights gained from analyzing specific systems, an understanding of the general physical mechanism underlying the emergence of chimeras is still lacking. Here, we show that many stable chimeras arise because coherence in part of the system is sustained by incoherence in the rest of the system. This mechanism may be regarded as a deterministic analog of noise-induced synchronization and is shown to underlie the emergence of strong chimeras. These are chimera states whose coherent domain is formed by identically synchronized oscillators. Recognizing this mechanism offers a new meaning to the interpretation that chimeras are a natural link between coherence and incoherence.
We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does
Previous research on nonlinear oscillator networks has shown that chaos synchronization is attainable for identical oscillators but deteriorates in the presence of parameter mismatches. Here, we identify regimes for which the opposite occurs and show
Population bursts in a large ensemble of coupled elements result from the interplay between the local excitable properties of the nodes and the global network topology. Here collective excitability and self-sustained bursting oscillations are shown t
Two symmetrically coupled populations of N oscillators with inertia $m$ display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendula. In particular, we report the first evidence of intermittent chaotic c