ترغب بنشر مسار تعليمي؟ اضغط هنا

GN-z11-flash: A shock-breakout in a Population III supernova at Cosmic Dawn?

68   0   0.0 ( 0 )
 نشر من قبل Hamsa Padmanabhan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hamsa Padmanabhan




اسأل ChatGPT حول البحث

We discuss the possible interpretation of the recently observed transient, GN-z11-flash as originating from a shock-breakout in a Population III supernova occurring in the GN-z11 galaxy at $z sim 11$. We find that the parameters of the explosion are fully consistent with those expected from the shock breakout associated with a Type II supernova of a progenitor star of $sim 300$ solar masses in this galaxy, with of order unity such events expected over an observing timescale of a few years. We forecast the expected number of such transients from $z > 10$ galaxies as a function of their host stellar mass and star formation rate.



قيم البحث

اقرأ أيضاً

The recently discovered rapid transient GN-z11-flash has been suggested to be the prompt-emission ultraviolet flash associated with a gamma-ray burst serendipitously exploding in the ultra-high-$z$ galaxy GN-z11. We here place the flash into the cont ext of the early ultraviolet emission of gamma-ray bursts, and find it is in agreement with the luminosity distribution of these events.
GN-z11 was photometrically selected as a luminous star-forming galaxy candidate at redshift z > 10 based on Hubble Space Telescope (HST) imaging data. Follow-up HST near-infrared grism observations detected a continuum break that was explained as the Ly-alpha break corresponding to z = 11.09 (+0.08-0.12). However, its accurate redshift remained unclear. Here we report a probable detection of three ultraviolet (UV) emission lines from GN-z11, which can be interpreted as the [C III] 1907, C III] 1909 doublet and O III] 1666 at z = 10.957+/-0.001 (when the Universe was only ~420 Myr old, or ~3% of its current age). This is consistent with the redshift of the previous grism observations, supporting GN-z11 as the most distant galaxy known to date. Its UV lines likely originate from dense ionized gas that is rarely seen at low redshifts, and its strong [C III] and C III] emission is partly due to an active galactic nucleus (AGN) or enhanced carbon abundance. GN-z11 is luminous and young, yet moderately massive, implying a rapid build-up of stellar mass in the past. Future facilities will be able to find the progenitors of such galaxies at higher redshift and probe the cosmic epoch in the beginning of re-ionization.
Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic core-collapse supernova. Such events are usually only detected at least a few days after the star has exploded. Observation s of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars
In Jiang et al. (2020), we reported a possible bright flash (hereafter GN-z11-flash) from a galaxy GN-z11 at z ~ 11. Recently, Steinhardt et al. (2021; arXiv:2101.12738) found 27 images with transient signals in Keck MOSFIRE archival data and claimed that GN-z11-flash was more likely from a moving object in our Solar system. We show that the Steinhardt et al.s definition of the chance probability and their methodology of finding GN-z11-flash-like transients are problematic in several aspects. In particular, none of their transients is analogous to GN-z11-flash, and none of them is positionally coincident with a known object in their imaging data. In Jiang et al., we performed a comprehensive analysis of the origin of GN-z11-flash and ruled out, to the best of our knowledge, the possibility of known man-made objects or moving objects in the Solar system, based on all available information and our current understanding of these objects. Steinhardt et al. did not use such information and did not analyse the GN-z11-flash event itself. The majority of their transients are apparently low-Earth orbit satellites or aircrafts. Therefore, their analysis can neither prove nor disprove our results. Finally, we present a method to estimate the chance probability of finding GN-z11-flash-like transients in archival data. Based on this method and the archival data used by Steinhardt et al., we obtain a loose upper limit of the probability that actually support the original results of Jiang et al. (2020).
Neutrinos and gravitational waves are the only direct probes of the inner dynamics of a stellar core collapse. They are also the first signals to arrive from a supernova and, if detected, establish the moment when the shock wave is formed that unbind s the stellar envelope and later initiates the optical display upon reaching the stellar surface with a burst of UV and X-ray photons, the shock breakout (SBO). We discuss how neutrino observations can be used to trigger searches to detect the elusive SBO event. Observation of the SBO would provide several important constraints on progenitor structure and the explosion, including the shock propagation time (the duration between the neutrino burst and SBO), an observable that is important in distinguishing progenitor types. Our estimates suggest that next generation neutrino detectors could exploit the overdensity of nearby SNe to provide several such triggers per decade, more than an order of magnitude improvement over the present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا