ﻻ يوجد ملخص باللغة العربية
Stellar tidal streams are sensitive tracers of the properties of the gravitational potential in which they orbit and detailed observations of their density structure can be used to place stringent constraints on fluctuations in the potential caused by, e.g., the expected populations of dark matter subhalos in the standard cold dark matter paradigm (CDM). Simulations of the evolution of stellar streams in live $N$-body halos without low-mass dark-matter subhalos, however, indicate that streams exhibit significant perturbations on small scales even in the absence of substructure. Here we demonstrate, using high-resolution $N$-body simulations combined with sophisticated semi-analytic and simple analytic models, that the mass resolutions of $10^4$--$10^5,rm{M}_{odot}$ commonly used to perform such simulations cause spurious stream density variations with a similar magnitude on large scales as those expected from a CDM-like subhalo population and an order of magnitude larger on small, yet observable, scales. We estimate that mass resolutions of $approx100,rm{M}_{odot}$ ($approx1,rm{M}_{odot}$) are necessary for spurious, numerical density variations to be well below the CDM subhalo expectation on large (small) scales. That streams are sensitive to a simulations particle mass down to such small masses indicates that streams are sensitive to dark matter clustering down to these low masses if a significant fraction of the dark matter is clustered or concentrated in this way, for example, in MACHO models with masses of $10$--$100,rm{M}_{odot}$.
We describe a major upgrade of a Monte Carlo code which has previously been used for many studies of dense star clusters. We outline the steps needed in order to calibrate the results of the new Monte Carlo code against $N$-body simulations for large
We use direct $N$-body calculations to study the evolution of the unusually extended outer halo globular cluster Palomar 4 (Pal~4) over its entire lifetime in order to reproduce its observed mass, half-light radius, velocity dispersion and mass funct
We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation
We investigate clustering properties of quasars using a new version of our semi-analytic model of galaxy and quasar formation with state-of-the-art cosmological N-body simulations. In this study, we assume that a major merger of galaxies triggers col
Hierarchical clustering represents the favoured paradigm for galaxy formation throughout the Universe; due to its proximity, the Magellanic system offers one of the few opportunities for astrophysicists to decompose the full six-dimensional phase-spa