ﻻ يوجد ملخص باللغة العربية
Exactly solvable models play a special role in Condensed Matter physics, serving as secure theoretical starting points for investigation of new phenomena. Changlani et al. [Phys. Rev. Lett. 120, 117202 (2018)] have discovered a limit of the XXZ model for $S=1/2$ spins on the kagome lattice, which is not only exactly solvable, but features a huge degeneracy of exact ground states corresponding to solutions of a three-coloring problem. This special point of the model was proposed as a parent for multiple phases in the wider phase diagram, including quantum spin liquids. Here, we show that the construction of Changlani et al. can be extended to more general forms of anisotropic exchange interaction, finding a line of parameter space in an XYZ model which maintains both the macroscopic degeneracy and the three-coloring structure of solutions. We show that the ground states along this line are partially ordered, in the sense that infinite-range correlations of some spin components coexist with a macroscopic number of undetermined degrees of freedom. We therefore propose the exactly solvable limit of the XYZ model on corner-sharing triangle-based lattices as a tractable starting point for discovery of quantum spin systems which mix ordered and spin liquid-like properties.
We establish a direct connection between inhomogeneous XX spin chains (or free fermion systems with nearest-neighbors hopping) and certain QES models on the line giving rise to a family of weakly orthogonal polynomials. We classify all such models an
We propose a general construction of commuting projector lattice models for 2D and 3D topological phases enriched by U(1) symmetry, with finite-dimensional Hilbert space per site. The construction starts from a commuting projector model of the topolo
We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes of symmetric local unitary transformatio
We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological v
We present a family of spin ladder models which admit exact solution for the ground state and exhibit non-Haldane spin liquid properties as predicted recently by Nersesyan and Tsvelik [Phys. Rev. Lett. v.78, 3939 (1997)], and study their excitation s