ﻻ يوجد ملخص باللغة العربية
When an individuals DNA is sequenced, sensitive medical information becomes available to the sequencing laboratory. A recently proposed way to hide an individuals genetic information is to mix in DNA samples of other individuals. We assume these samples are known to the individual but unknown to the sequencing laboratory. Thus, these DNA samples act as noise to the sequencing laboratory, but still allow the individual to recover their own DNA samples afterward. Motivated by this idea, we study the problem of hiding a binary random variable X (a genetic marker) with the additive noise provided by mixing DNA samples, using mutual information as a privacy metric. This is equivalent to the problem of finding a worst-case noise distribution for recovering X from the noisy observation among a set of feasible discrete distributions. We characterize upper and lower bounds to the solution of this problem, which are empirically shown to be very close. The lower bound is obtained through a convex relaxation of the original discrete optimization problem, and yields a closed-form expression. The upper bound is computed via a greedy algorithm for selecting the mixing proportions.
We investigate the problem of semantic private information retrieval (semantic PIR). In semantic PIR, a user retrieves a message out of $K$ independent messages stored in $N$ replicated and non-colluding databases without revealing the identity of th
We introduce the problem of emph{timely} private information retrieval (PIR) from $N$ non-colluding and replicated servers. In this problem, a user desires to retrieve a message out of $M$ messages from the servers, whose contents are continuously up
We study the problem of private set intersection (PSI). In this problem, there are two entities $E_i$, for $i=1, 2$, each storing a set $mathcal{P}_i$, whose elements are picked from a finite field $mathbb{F}_K$, on $N_i$ replicated and non-colluding
We consider the problem of private information retrieval from $N$ emph{storage-constrained} databases. In this problem, a user wishes to retrieve a single message out of $M$ messages (of size $L$) without revealing any information about the identity
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defi