ﻻ يوجد ملخص باللغة العربية
Precision measurement plays a crucial role in all fields of science. The use of entangled sensors in quantum metrology improves the precision limit from the standard quantum limit (SQL) to the Heisenberg limit (HL). To date, most experiments beating the SQL are performed on the sensors which are well isolated under extreme conditions. However, it has not been realized in solid-state spin systems at ambient conditions, owing to its intrinsic complexity for the preparation and survival of pure and entangled quantum states. Here we show a full interferometer sequence beating the SQL by employing a hybrid multi-spin system, namely the nitrogen-vacancy (NV) defect in diamond. The interferometer sequence starts from a deterministic and joint initialization, undergoes entanglement and disentanglement of multiple spins, and ends up with projective measurement. In particular, the deterministic and joint initialization of NV negative state, NV electron spin, and two nuclear spins is realized at room temperature for the first time. By means of optimal control, non-local gates are implemented with an estimated fidelity above the threshold for fault-tolerant quantum computation. With these techniques combined, we achieve two-spin interference with a phase sensitivity of 1.79 pm 0.06 dB beyond the SQL and three-spin 2.77 pm 0.10 dB. Moreover, the deviations from the HL induced by experimental imperfections are completely accountable. The techniques used here are of fundamental importance for quantum sensing and computing, and naturally applicable to other solid-state spin systems.
We report a metrology scheme which measures magnetic susceptibility of an atomic spin ensemble along the $x$ and $z$ direction and produces parameter estimation with precision beating the standard quantum limit. The atomic ensemble is initialized via
This article aims to review the developments, both theoretical and experimental, that have in the past decade laid the ground for a new approach to solid state quantum computing. Measurement-based quantum computing (MBQC) requires neither direct inte
Unconventional receivers enable reduction of error rates in optical communication systems below the standard quantum limit (SQL) by implementing discrimination strategies for constellation symbols that go beyond the canonical measurement of informati
We propose and demonstrate experimentally a projection scheme to measure the quantum phase with a precision beating the standard quantum limit. The initial input state is a twin Fock state $|N,N>$ proposed by Holland and Burnett [Phys. Rev. Lett. {bf
Phononic quantum networks feature distinct advantages over photonic networks for on-chip quantum communications, providing a promising platform for developing quantum computers with robust solid-state spin qubits. Large mechanical networks including