ترغب بنشر مسار تعليمي؟ اضغط هنا

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

128   0   0.0 ( 0 )
 نشر من قبل Li Yuan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, eg, the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1 accuracy in image resolution 384$times$384 on ImageNet. (Code: https://github.com/yitu-opensource/T2T-ViT)



قيم البحث

اقرأ أيضاً

234 - Zihang Jiang , Qibin Hou , Li Yuan 2021
In this paper, we present token labeling -- a new training objective for training high-performance vision transformers (ViTs). Different from the standard training objective of ViTs that computes the classification loss on an additional trainable cla ss token, our proposed one takes advantage of all the image patch tokens to compute the training loss in a dense manner. Specifically, token labeling reformulates the image classification problem into multiple token-level recognition problems and assigns each patch token with an individual location-specific supervision generated by a machine annotator. Experiments show that token labeling can clearly and consistently improve the performance of various ViT models across a wide spectrum. For a vision transformer with 26M learnable parameters serving as an example, with token labeling, the model can achieve 84.4% Top-1 accuracy on ImageNet. The result can be further increased to 86.4% by slightly scaling the model size up to 150M, delivering the minimal-sized model among previous models (250M+) reaching 86%. We also show that token labeling can clearly improve the generalization capability of the pre-trained models on downstream tasks with dense prediction, such as semantic segmentation. Our code and all the training details will be made publicly available at https://github.com/zihangJiang/TokenLabeling.
Recently the vision transformer (ViT) architecture, where the backbone purely consists of self-attention mechanism, has achieved very promising performance in visual classification. However, the high performance of the original ViT heavily depends on pretraining using ultra large-scale datasets, and it significantly underperforms on ImageNet-1K if trained from scratch. This paper makes the efforts toward addressing this problem, by carefully considering the role of visual tokens. First, for classification head, existing ViT only exploits class token while entirely neglecting rich semantic information inherent in high-level visual tokens. Therefore, we propose a new classification paradigm, where the second-order, cross-covariance pooling of visual tokens is combined with class token for final classification. Meanwhile, a fast singular value power normalization is proposed for improving the second-order pooling. Second, the original ViT employs the naive embedding of fixed-size image patches, lacking the ability to model translation equivariance and locality. To alleviate this problem, we develop a light-weight, hierarchical module based on off-the-shelf convolutions for visual token embedding. The proposed architecture, which we call So-ViT, is thoroughly evaluated on ImageNet-1K. The results show our models, when trained from scratch, outperform the competing ViT variants, while being on par with or better than state-of-the-art CNN models. Code is available at https://github.com/jiangtaoxie/So-ViT
Vision transformers (ViTs) have recently received explosive popularity, but the huge computational cost is still a severe issue. Since the computation complexity of ViT is quadratic with respect to the input sequence length, a mainstream paradigm for computation reduction is to reduce the number of tokens. Existing designs include structured spatial compression that uses a progressive shrinking pyramid to reduce the computations of large feature maps, and unstructured token pruning that dynamically drops redundant tokens. However, the limitation of existing token pruning lies in two folds: 1) the incomplete spatial structure caused by pruning is not compatible with structured spatial compression that is commonly used in modern deep-narrow transformers; 2) it usually requires a time-consuming pre-training procedure. To tackle the limitations and expand the applicable scenario of token pruning, we present Evo-ViT, a self-motivated slow-fast token evolution approach for vision transformers. Specifically, we conduct unstructured instance-wise token selection by taking advantage of the simple and effective global class attention that is native to vision transformers. Then, we propose to update the selected informative tokens and uninformative tokens with different computation paths, namely, slow-fast updating. Since slow-fast updating mechanism maintains the spatial structure and information flow, Evo-ViT can accelerate vanilla transformers of both flat and deep-narrow structures from the very beginning of the training process. Experimental results demonstrate that our method significantly reduces the computational cost of vision transformers while maintaining comparable performance on image classification.
Vision Transformers (ViT) have been shown to attain highly competitive performance for a wide range of vision applications, such as image classification, object detection and semantic image segmentation. In comparison to convolutional neural networks , the Vision Transformers weaker inductive bias is generally found to cause an increased reliance on model regularization or data augmentation (``AugReg for short) when training on smaller training datasets. We conduct a systematic empirical study in order to better understand the interplay between the amount of training data, AugReg, model size and compute budget. As one result of this study we find that the combination of increased compute and AugReg can yield models with the same performance as models trained on an order of magnitude more training data: we train ViT models of various sizes on the public ImageNet-21k dataset which either match or outperform their counterparts trained on the larger, but not publicly available JFT-300M dataset.
Attention is sparse in vision transformers. We observe the final prediction in vision transformers is only based on a subset of most informative tokens, which is sufficient for accurate image recognition. Based on this observation, we propose a dynam ic token sparsification framework to prune redundant tokens progressively and dynamically based on the input. Specifically, we devise a lightweight prediction module to estimate the importance score of each token given the current features. The module is added to different layers to prune redundant tokens hierarchically. To optimize the prediction module in an end-to-end manner, we propose an attention masking strategy to differentiably prune a token by blocking its interactions with other tokens. Benefiting from the nature of self-attention, the unstructured sparse tokens are still hardware friendly, which makes our framework easy to achieve actual speed-up. By hierarchically pruning 66% of the input tokens, our method greatly reduces 31%~37% FLOPs and improves the throughput by over 40% while the drop of accuracy is within 0.5% for various vision transformers. Equipped with the dynamic token sparsification framework, DynamicViT models can achieve very competitive complexity/accuracy trade-offs compared to state-of-the-art CNNs and vision transformers on ImageNet. Code is available at https://github.com/raoyongming/DynamicViT
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا