ﻻ يوجد ملخص باللغة العربية
We investigate a recombination-drift-diffusion model coupled to Poissons equation modelling the transport of charge within certain types of semiconductors. In more detail, we study a two-level system for electrons and holes endowed with an intermediate energy level for electrons occupying trapped states. As our main result, we establish an explicit functional inequality between relative entropy and entropy production, which leads to exponential convergence to equilibrium. We stress that our approach is applied uniformly in the lifetime of electrons on the trap level assuming that this lifetime is sufficiently small.
We consider non-reversible perturbations of reversible diffusions that do not alter the invariant distribution and we ask whether there exists an optimal perturbation such that the rate of convergence to equilibrium is maximized. We solve this proble
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced c
In this paper we study the rate of convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. We first analyze a three-species system with boundary equilibria in some stoichiometric classes,
We study a continuous-time dynamical system that models the evolving distribution of genotypes in an infinite population where genomes may have infinitely many or even a continuum of loci, mutations accumulate along lineages without back-mutation, ad
We are concerned with the long-time behavior of the growth-fragmentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to 0 and $+infty$. Using these es