ﻻ يوجد ملخص باللغة العربية
The present article is devoted to developing the Legendre wavelet operational matrix method (LWOMM) to find the numerical solution of two-dimensional hyperbolic telegraph equations (HTE) with appropriate initial time boundary space conditions. The Legendre wavelets series with unknown coefficients have been used for approximating the solution in both of the spatial and temporal variables. The basic idea for discretizing two-dimensional HTE is based on differentiation and integration of operational matrices. By implementing LWOMM on HTE, HTE is transformed into algebraic generalized Sylvester equation. Numerical experiments are provided to illustrate the accuracy and efficiency of the presented numerical scheme. Comparisons of numerical results associated with the proposed method with some of the existing numerical methods confirm that the method is easy, accurate and fast experimentally. Moreover, we have investigated the convergence analysis of multidimensional Legendre wavelet approximation. Finally, we have compared our result with the research article of Mittal and Bhatia (see [1]).
We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low dimensional variable interactions. Compactly supported periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis. In
Fractional Fokker-Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive
In this paper, we present a numerical verification method of solutions for nonlinear parabolic initial boundary value problems. Decomposing the problem into a nonlinear part and an initial value part, we apply Nakaos projection method, which is based
This paper addresses the question whether there are numerical schemes for constant-coefficient advection problems that can yield convergent solutions for an infinite time horizon. The motivation is that such methods may serve as building blocks for l
We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compr