ترغب بنشر مسار تعليمي؟ اضغط هنا

Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case

314   0   0.0 ( 0 )
 نشر من قبل Tousif Islam
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop new strategies to build numerical relativity surrogate models for eccentric binary black hole systems, which are expected to play an increasingly important role in current and future gravitational-wave detectors. We introduce a new surrogate waveform model, texttt{NRSur2dq1Ecc}, using 47 nonspinning, equal-mass waveforms with eccentricities up to $0.2$ when measured at a reference time of $5500M$ before merger. This is the first waveform model that is directly trained on eccentric numerical relativity simulations and does not require that the binary circularizes before merger. The model includes the $(2,2)$, $(3,2)$, and $(4,4)$ spin-weighted spherical harmonic modes. We also build a final black hole model, texttt{NRSur2dq1EccRemnant}, which models the mass, and spin of the remnant black hole. We show that our waveform model can accurately predict numerical relativity waveforms with mismatches $approx 10^{-3}$, while the remnant model can recover the final mass and dimensionless spin with absolute errors smaller than $approx 5 times 10^{-4}M$ and $approx 2 times10^{-3}$ respectively. We demonstrate that the waveform model can also recover subtle effects like mode-mixing in the ringdown signal without any special ad-hoc modeling steps. Finally, we show that despite being trained only on equal-mass binaries, texttt{NRSur2dq1Ecc} can be reasonably extended up to mass ratio $qapprox3$ with mismatches $simeq 10^{-2}$ for eccentricities smaller than $sim 0.05$ as measured at a reference time of $2000M$ before merger. The methods developed here should prove useful in the building of future eccentric surrogate models over larger regions of the parameter space.

قيم البحث

اقرأ أيضاً

Gravitational wave signals from compact astrophysical sources such as those observed by LIGO and Virgo require a high-accuracy, theory-based waveform model for the analysis of the recorded signal. Current inspiral-merger-ringdown models are calibrate d only up to moderate mass ratios, thereby limiting their applicability to signals from high-mass ratio binary systems. We present EMRISur1dq1e4, a reduced-order surrogate model for gravitational waveforms of 13,500M in duration and including several harmonic modes for non-spinning black hole binary systems with mass-ratios varying from 3 to 10,000 thus vastly expanding the parameter range beyond the current models. This surrogate model is trained on waveform data generated by point-particle black hole perturbation theory (ppBHPT) both for large mass-ratio and comparable mass-ratio binaries. We observe that the gravitational waveforms generated through a simple application of ppBHPT to the comparable mass-ratio cases agree remarkably (and surprisingly) well with those from full numerical relativity after a rescaling of the ppBHPTs total mass parameter. This observation and the EMRISur1dq1e4 surrogate model will enable data analysis studies in the high-mass ratio regime, including potential intermediate mass-ratio signals from LIGO/Virgo and extreme-mass ratio events of interest to the future space-based observatory LISA.
We present $texttt{ENIGMA}$, a time domain, inspiral-merger-ringdown waveform model that describes non-spinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasi-circular merger, which is constructed using machine learning algorithms that are trained with quasi-circular numerical relativity waveforms. We show that $texttt{ENIGMA}$ reproduces with excellent accuracy the dynamics of quasi-circular compact binaries. We validate $texttt{ENIGMA}$ using a set of $texttt{Einstein Toolkit}$ eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between $1 leq q leq 5.5$, and eccentricities $e_0 lesssim 0.2$ ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, non-spinning binary black hole mergers. We use $texttt{ENIGMA}$ to show that GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasi-circular templates if the eccentricity of these events at a gravitational wave frequency of 10Hz satisfies $e_0leq {0.175,, 0.125,,0.175,,0.175,, 0.125}$, respectively. We show that if these systems have eccentricities $e_0sim 0.1$ at a gravitational wave frequency of 10Hz, they can be misclassified as quasi-circular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These simulations, however, are prohibitively expensive for direct data analysis applications such as parameter estimation. We present two new fast and accurate surrogate models for the outputs of these simulations: the first model, NRSur7dq4, predicts the gravitational waveform and the second model, RemnantModel, predicts the properties of the remnant black hole. These models extend previous 7-dimensional, non-eccentric precessing models to higher mass ratios, and have been trained against 1528 simulations with mass ratios $qleq4$ and spin magnitudes $chi_1,chi_2 leq 0.8$, with generic spin directions. The waveform model, NRSur7dq4, which begins about 20 orbits before merger, includes all $ell leq 4$ spin-weighted spherical harmonic modes, as well as the precession frame dynamics and spin evolution of the black holes. The final black hole model, RemnantModel, models the mass, spin, and recoil kick velocity of the remnant black hole. In their training parameter range, both models are shown to be more accurate than existing models by at least an order of magnitude, with errors comparable to the estimated errors in the numerical relativity simulations. We also show that the surrogate models work well even when extrapolated outside their training parameter space range, up to mass ratios $q=6$.
We present the results of 14 simulations of nonspinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1/100leq qleq1$. For each of these simulations we perform three runs at increasing resolution to assess the finite difference error s and to extrapolate the results to infinite resolution. For $qgeq 1/6$, we follow the evolution of the binary typically for the last ten orbits prior to merger. By fitting the results of these simulations, we accurately model the peak luminosity, peak waveform frequency and amplitude, and the recoil of the remnant hole for unequal mass nonspinning binaries. We verify the accuracy of these new models and compare them to previously existing empirical formulas. These new fits provide a basis for a hierarchical approach to produce more accurate remnant formulas in the generic precessing case. They also provide input to gravitational waveform modeling.
A generic, non-eccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by 7 intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einste ins equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all $7$ dimensions of the intrinsic non-eccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of $744$ numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to $0.8$ and mass ratios up to $2$, includes all $ell leq 4$ modes, begins about $20$ orbits before merger, and can be evaluated in $sim~50,mathrm{ms}$. We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that would otherwise require millions of numerical relativity waveforms, such as parameter inference and tests of general relativity with GW observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا