ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-ranged velocity correlations in dense systems of self-propelled particles

73   0   0.0 ( 0 )
 نشر من قبل Grzegorz Szamel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Model systems of self-propelled particles reproduce many phenomena observed in laboratory active matter systems that defy our thermal equilibrium-based intuition. In particular, in stationary states of self-propelled systems, it is recognized that velocities of different particles exhibit non-trivial equal-time correlations. Such correlations are absent in equivalent equilibrium systems. Recently, researchers found that the range of the velocity correlations increases with increasing persistence time of the self-propulsion and can extend over many particle diameters. Here we review the initial studies of long-ranged velocity correlations in solid-like systems of self-propelled particles. Then, we demonstrate that the long-ranged velocity correlations are also present in dense fluid-like systems. We show that the range of velocity correlations in dense systems of self-propelled particles is determined by the combination of the self-propulsion and the virial bulk modulus that originates from repulsive interparticle interactions.



قيم البحث

اقرأ أيضاً

54 - Ruoyang Mo , Qinyi Liao , Ning Xu 2021
Different from previous modelings of self-propelled particles, we develop a method to propel the particles with a constant average velocity instead of a constant force. This constant propulsion velocity (CPV) approach is validated by its agreement wi th the conventional constant propulsion force (CPF) approach in the flowing regime. However, the CPV approach shows its advantage of accessing quasistatic flows of yield stress fluids with a vanishing propulsion velocity, while the CPF approach is usually unable to because of finite system size. Taking this advantage, we realize the cyclic self-propulsion and study the evolution of the propulsion force with propelled particle displacement, both in the quasistatic flow regime. By mapping shear stress and shear rate to propulsion force and propulsion velocity, we find similar rheological behaviors of self-propelled systems to sheared systems, including the yield force gap between the CPF and CPV approaches, propulsion force overshoot, reversible-irreversible transition under cyclic propulsion, and propulsion bands in plastic flows. These similarities suggest the underlying connections between self-propulsion and shear, although they act on systems in different ways.
A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still unexplored aspect of the patterns arising in the system of actively moving units, i.e., their segregation taking place when two kinds of them with different adhesive properties are present. The process of segregation is studied by a model made of self-propelled particles such that the particles have a tendency to adhere only to those which are of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that the segregation kinetics is very different from the non-driven counterparts and is described by the new scaling exponents $zsimeq 1$ and $zsimeq 0.8$ for the 1:1 and the non-equal ratio of the two constituents, respectively. Our results are in agreement with a recent observation of segregating tissue cells emph{in vitro}.
Active particles with their characteristic feature of self-propulsion are regarded as the simplest models for motility in living systems. The accumulation of active particles in low activity regions has led to the general belief that chemotaxis requi res additional features and at least a minimal ability to process information and to control motion. We show that self-propelled particles display chemotaxis and move into regions of higher activity, if the particles perform work on passive objects, or cargo, to which they are bound. The origin of this cooperative chemotaxis is the exploration of the activity gradient by the active particle when bound to a load, resulting in an average excess force on the load in the direction of higher activity. Using a minimalistic theoretical model, we capture the most relevant features of these active-passive dimers and in particular we predict the crossover between anti-chemotactic and chemotactic behaviour. Moreover we show that merely connecting active particles to chains is sufficient to obtain the crossover from anti-chemotaxis to chemotaxis with increasing chain length. Such an active complex is capable of moving up a gradient of activity such as provided by a gradient of fuel and to accumulate where the fuel concentration is at its maximum. The observed transition is of significance to proto-forms of life enabling them to locate a source of nutrients even in the absence of any supporting sensomotoric apparatus.
Catching fish with a fishing net is typically done either by dragging a fishing net through quiescent water or by placing a stationary basket trap into a stream. We transfer these general concepts to micron-sized self-motile particles moving in a sol vent at low Reynolds number and study their collective trapping behaviour by means of computer simulations of a two-dimensional system of self-propelled rods. A chevron-shaped obstacle is dragged through the active suspension with a constant speed $v$ and acts as a trapping net. Three trapping states can be identified corresponding to no trapping, partial trapping and complete trapping and their relative stability is studied as a function of the apex angle of the wedge, the swimmer density and the drag speed $v$. When the net is dragged along the inner wedge, complete trapping is facilitated and a partially trapped state changes into a complete trapping state if the drag speed exceeds a certain value. Reversing the drag direction leads to a reentrant transition from no trapping, complete trapping, back to no trapping upon increasing the drag speed along the outer wedge contour. The transition to complete trapping is marked by a templated self-assembly of rods forming polar smectic structures anchored onto the inner contour of the wedge. Our predictions can be verified in experiments of artificial or microbial swimmers confined in microfluidic trapping devices.
We develop a statistical theory for the dynamics of non-aligning, non-interacting self-propelled particles confined in a convex box in two dimensions. We find that when the size of the box is small compared to the persistence length of a particles tr ajectory (strong confinement), the steady-state density is zero in the bulk and proportional to the local curvature on the boundary. Conversely, the theory may be used to construct the box shape that yields any desired density distribution on the boundary. When the curvature variations are small, we also predict the distribution of orientations at the boundary and the exponential decay of pressure as a function of box size recently observed in 3D simulations in a spherical box.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا