ترغب بنشر مسار تعليمي؟ اضغط هنا

geoGAT: Graph Model Based on Attention Mechanism for Geographic Text Classification

99   0   0.0 ( 0 )
 نشر من قبل Xianyang Song
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the area of geographic information processing. There are few researches on geographic text classification. However, the application of this task in Chinese is relatively rare. In our work, we intend to implement a method to extract text containing geographical entities from a large number of network text. The geographic information in these texts is of great practical significance to transportation, urban and rural planning, disaster relief and other fields. We use the method of graph convolutional neural network with attention mechanism to achieve this function. Graph attention networks is an improvement of graph convolutional neural networks. Compared with GCN, the advantage of GAT is that the attention mechanism is proposed to weight the sum of the characteristics of adjacent nodes. In addition, We construct a Chinese dataset containing geographical classification from multiple datasets of Chinese text classification. The Macro-F Score of the geoGAT we used reached 95% on the new Chinese dataset.



قيم البحث

اقرأ أيضاً

Neural network-based approaches have become the driven forces for Natural Language Processing (NLP) tasks. Conventionally, there are two mainstream neural architectures for NLP tasks: the recurrent neural network (RNN) and the convolution neural netw ork (ConvNet). RNNs are good at modeling long-term dependencies over input texts, but preclude parallel computation. ConvNets do not have memory capability and it has to model sequential data as un-ordered features. Therefore, ConvNets fail to learn sequential dependencies over the input texts, but it is able to carry out high-efficient parallel computation. As each neural architecture, such as RNN and ConvNets, has its own pro and con, integration of different architectures is assumed to be able to enrich the semantic representation of texts, thus enhance the performance of NLP tasks. However, few investigation explores the reconciliation of these seemingly incompatible architectures. To address this issue, we propose a hybrid architecture based on a novel hierarchical multi-granularity attention mechanism, named Multi-granularity Attention-based Hybrid Neural Network (MahNN). The attention mechanism is to assign different weights to different parts of the input sequence to increase the computation efficiency and performance of neural models. In MahNN, two types of attentions are introduced: the syntactical attention and the semantical attention. The syntactical attention computes the importance of the syntactic elements (such as words or sentence) at the lower symbolic level and the semantical attention is used to compute the importance of the embedded space dimension corresponding to the upper latent semantics. We adopt the text classification as an exemplifying way to illustrate the ability of MahNN to understand texts.
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with th e practical problems of fixed corpus level graph structure which do not support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.
In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguis tic perspective and the analysis of pre-trained Transformer (BERT) on a huge corpus, we further design a strategy to control the scale distribution for each layer. Results of three different kinds of tasks (21 datasets) show our Multi-Scale Transformer outperforms the standard Transformer consistently and significantly on small and moderate size datasets.
Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term dependencies and store the semantics of the previous information in a fixed-sized vector. However, RNN is a biased model and its ability to extract global semantics is restricted by the fixed-sized vector. Alternatively, CNN is able to capture n-gram features of texts by utilizing convolutional filters. But the width of convolutional filters restricts its performance. In order to combine the strengths of the two kinds of networks and alleviate their shortcomings, this paper proposes Attention-based Multichannel Convolutional Neural Network (AMCNN) for text classification. AMCNN utilizes a bi-directional long short-term memory to encode the history and future information of words into high dimensional representations, so that the information of both the front and back of the sentence can be fully expressed. Then the scalar attention and vectorial attention are applied to obtain multichannel representations. The scalar attention can calculate the word-level importance and the vectorial attention can calculate the feature-level importance. In the classification task, AMCNN uses a CNN structure to cpture word relations on the representations generated by the scalar and vectorial attention mechanism instead of calculating the weighted sums. It can effectively extract the n-gram features of the text. The experimental results on the benchmark datasets demonstrate that AMCNN achieves better performance than state-of-the-art methods. In addition, the visualization results verify the semantic richness of multichannel representations.
Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا