ﻻ يوجد ملخص باللغة العربية
With the development of modern radio interferometers, wide-field continuum surveys have been planned and undertaken, for which accurate wide-field imaging methods are essential. Based on the widely-used W-stacking method, we propose a new wide-field imaging algorithm that can synthesize visibility data from a model of the sky brightness via degridding, able to construct dirty maps from measured visibility data via gridding. Results carry the smallest approximation error yet achieved relative to the exact calculation involving the direct Fourier transform. In contrast to the original W-stacking method, the new algorithm performs least-misfit optimal gridding (and degridding) in all three directions, and is capable of achieving much higher accuracy than is feasible with the original algorithm. In particular, accuracy at the level of single precision arithmetic is readily achieved by choosing a least-misfit convolution function of width W=7 and an image cropping parameter of x_0=0.25. If the accuracy required is only that attained by the original W-stacking method, the computational cost for both the gridding and FFT steps can be substantially reduced using the proposed method by making an appropriate choice of the width and image cropping parameters.
We investigate the imaging performance of an interferometric array in the case of wide field, high resolution, narrow band, snapshot imaging. We find that, when uv-cell sizes are sufficiently small (ie. image sizes are sufficiently large), each insta
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify
In radio interferometry imaging, the gridding procedure of convolving visibilities with a chosen gridding function is necessary to transform visibility values into uniformly sampled grid points. We propose here a parameterised family of least-misfit
CLEAN, the commonly employed imaging algorithm in radio interferometry, suffers from a number of shortcomings: in its basic version it does not have the concept of diffuse flux, and the common practice of convolving the CLEAN components with the CLEA
GravityCam is a new concept of ground-based imaging instrument capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. Advances in optical and near infrared imaging technologies allow imag