ترغب بنشر مسار تعليمي؟ اضغط هنا

First Align, then Predict: Understanding the Cross-Lingual Ability of Multilingual BERT

73   0   0.0 ( 0 )
 نشر من قبل Djam\\'e Seddah
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multilingual pretrained language models have demonstrated remarkable zero-shot cross-lingual transfer capabilities. Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning. Despite promising results, we still lack a proper understanding of the source of this transfer. Using a novel layer ablation technique and analyses of the models internal representations, we show that multilingual BERT, a popular multilingual language model, can be viewed as the stacking of two sub-networks: a multilingual encoder followed by a task-specific language-agnostic predictor. While the encoder is crucial for cross-lingual transfer and remains mostly unchanged during fine-tuning, the task predictor has little importance on the transfer and can be reinitialized during fine-tuning. We present extensive experiments with three distinct tasks, seventeen typologically diverse languages and multiple domains to support our hypothesis.

قيم البحث

اقرأ أيضاً

In recent years, we have seen a colossal effort in pre-training multilingual text encoders using large-scale corpora in many languages to facilitate cross-lingual transfer learning. However, due to typological differences across languages, the cross- lingual transfer is challenging. Nevertheless, language syntax, e.g., syntactic dependencies, can bridge the typological gap. Previous works have shown that pre-trained multilingual encoders, such as mBERT cite{devlin-etal-2019-bert}, capture language syntax, helping cross-lingual transfer. This work shows that explicitly providing language syntax and training mBERT using an auxiliary objective to encode the universal dependency tree structure helps cross-lingual transfer. We perform rigorous experiments on four NLP tasks, including text classification, question answering, named entity recognition, and task-oriented semantic parsing. The experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks, such as PAWS-X and MLQA, by 1.4 and 1.6 points on average across all languages. In the emph{generalized} transfer setting, the performance boosted significantly, with 3.9 and 3.1 points on average in PAWS-X and MLQA.
Cross-lingual Entity Linking (XEL) aims to ground entity mentions written in any language to an English Knowledge Base (KB), such as Wikipedia. XEL for most languages is challenging, owing to limited availability of resources as supervision. We addre ss this challenge by developing the first XEL approach that combines supervision from multiple languages jointly. This enables our approach to: (a) augment the limited supervision in the target language with additional supervision from a high-resource language (like English), and (b) train a single entity linking model for multiple languages, improving upon individually trained models for each language. Extensive evaluation on three benchmark datasets across 8 languages shows that our approach significantly improves over the current state-of-the-art. We also provide analyses in two limited resource settings: (a) zero-shot setting, when no supervision in the target language is available, and in (b) low-resource setting, when some supervision in the target language is available. Our analysis provides insights into the limitations of zero-shot XEL approaches in realistic scenarios, and shows the value of joint supervision in low-resource settings.
Reverse dictionary is the task to find the proper target word given the word description. In this paper, we tried to incorporate BERT into this task. However, since BERT is based on the byte-pair-encoding (BPE) subword encoding, it is nontrivial to m ake BERT generate a word given the description. We propose a simple but effective method to make BERT generate the target word for this specific task. Besides, the cross-lingual reverse dictionary is the task to find the proper target word described in another language. Previous models have to keep two different word embeddings and learn to align these embeddings. Nevertheless, by using the Multilingual BERT (mBERT), we can efficiently conduct the cross-lingual reverse dictionary with one subword embedding, and the alignment between languages is not necessary. More importantly, mBERT can achieve remarkable cross-lingual reverse dictionary performance even without the parallel corpus, which means it can conduct the cross-lingual reverse dictionary with only corresponding monolingual data. Code is publicly available at https://github.com/yhcc/BertForRD.git.
A desirable property of learning systems is to be both effective and interpretable. Towards this goal, recent models have been proposed that first generate an extractive explanation from the input text and then generate a prediction on just the expla nation called explain-then-predict models. These models primarily consider the task input as a supervision signal in learning an extractive explanation and do not effectively integrate rationales data as an additional inductive bias to improve task performance. We propose a novel yet simple approach ExPred, that uses multi-task learning in the explanation generation phase effectively trading-off explanation and prediction losses. And then we use another prediction network on just the extracted explanations for optimizing the task performance. We conduct an extensive evaluation of our approach on three diverse language datasets -- fact verification, sentiment classification, and QA -- and find that we substantially outperform existing approaches.
The recently proposed massively multilingual neural machine translation (NMT) system has been shown to be capable of translating over 100 languages to and from English within a single model. Its improved translation performance on low resource langua ges hints at potential cross-lingual transfer capability for downstream tasks. In this paper, we evaluate the cross-lingual effectiveness of representations from the encoder of a massively multilingual NMT model on 5 downstream classification and sequence labeling tasks covering a diverse set of over 50 languages. We compare against a strong baseline, multilingual BERT (mBERT), in different cross-lingual transfer learning scenarios and show gains in zero-shot transfer in 4 out of these 5 tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا