ﻻ يوجد ملخص باللغة العربية
We develop an inhomogeneous quantum mean-field theory for disordered particle-hole symmetric Bose-Hubbard models in two dimensions. Collective excitations are described by fluctuations about the mean-field ground state. In quadratic (Gaussian) approximation, the Goldstone (phase) and Higgs (amplitude) modes completely decouple. Each is described by a disordered Bogoliubov Hamiltonian which can be solved by an inhomogeneous multi-mode Bogoliubov transformation. We find that the Higgs modes are noncritical and strictly localized everywhere in the phase diagram. In contrast, the lowest-energy Goldstone mode delocalizes in the superfluid phase. We discuss these findings from the perspective of conventional Anderson localization theory. We also compare the effects of different types of disorder such as site dilution and random interactions; we relate our results to recent quantum Monte Carlo simulations, and we discuss the limits and generality of our approach.
We consider spectroscopies of strongly interacting atomic gases, and we propose a model for describing the coupling between quasiparticles and gapless phonon-like modes. Our model explains features in a wide range of different experiments in both fer
We show that in the regime when strong disorder is more relevant than field quantization the superfluid--to--Bose-glass criticality of one-dimensional bosons is preceded by the prolonged logarithmically slow classical-field renormalization flow of th
We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into ela
Reflectionless potentials play an important role in constructing exact solutions to classical dynamical systems, non-perturbative solutions of various large-N field theories, and closely related solitonic solutions to the Bogoliubov-de Gennes equatio
It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting