ﻻ يوجد ملخص باللغة العربية
We describe the application of convolutional neural network style transfer to the problem of improved visualization of underdrawings and ghost-paintings in fine art oil paintings. Such underdrawings and hidden paintings are typically revealed by x-ray or infrared techniques which yield images that are grayscale, and thus devoid of color and full style information. Past methods for inferring color in underdrawings have been based on physical x-ray fluorescence spectral imaging of pigments in ghost-paintings and are thus expensive, time consuming, and require equipment not available in most conservation studios. Our algorithmic methods do not need such expensive physical imaging devices. Our proof-of-concept system, applied to works by Pablo Picasso and Leonardo, reveal colors and designs that respect the natural segmentation in the ghost-painting. We believe the computed images provide insight into the artist and associated oeuvre not available by other means. Our results strongly suggest that future applications based on larger corpora of paintings for training will display color schemes and designs that even more closely resemble works of the artist. For these reasons refinements to our methods should find wide use in art conservation, connoisseurship, and art analysis.
We apply generative adversarial convolutional neural networks to the problem of style transfer to underdrawings and ghost-images in x-rays of fine art paintings with a special focus on enhancing their spatial resolution. We build upon a neural archit
Visual design is associated with the use of some basic design elements and principles. Those are applied by the designers in the various disciplines for aesthetic purposes, relying on an intuitive and subjective process. Thus, numerical analysis of d
The spatial distributions of different types of cells could reveal a cancer cell growth pattern, its relationships with the tumor microenvironment and the immune response of the body, all of which represent key hallmarks of cancer. However, manually
Universal Neural Style Transfer (NST) methods are capable of performing style transfer of arbitrary styles in a style-agnostic manner via feature transforms in (almost) real-time. Even though their unimodal parametric style modeling approach has been
In order to deploy deep convolutional neural networks (CNNs) on resource-limited devices, many model pruning methods for filters and weights have been developed, while only a few to layer pruning. However, compared with filter pruning and weight prun