ﻻ يوجد ملخص باللغة العربية
Many simplicial complexes arising in practice have an associated metric space structure on the vertex set but not on the complex, e.g. the Vietoris-Rips complex in applied topology. We formalize a remedy by introducing a category of simplicial metric thickenings whose objects have a natural realization as metric spaces. The properties of this category allow us to prove that, for a large class of thickenings including Vietoris-Rips and Cech thickenings, the product of metric thickenings is homotopy equivalent to the metric thickenings of product spaces, and similarly for wedge sums.
Thickenings of a metric space capture local geometric properties of the space. Here we exhibit applications of lower bounding the topology of thickenings of the circle and more generally the sphere. We explain interconnections with the geometry of ci
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up
In this short note we prove that two definitions of (co)ends in $infty$-categories, via twisted arrow $infty$-categories and via $infty$-categories of simplices, are equivalent. We also show that weighted (co)limits, which can be defined as certain (
We develop a localisation theory for certain categories, yielding a 3-arrow calculus: Every morphism in the localisation is represented by a diagram of length 3, and two such diagrams represent the same morphism if and only if they can be embedded in
We use the basic expected properties of the Gray tensor product of $(infty,2)$-categories to study (co)lax natural transformations. Using results of Riehl-Verity and Zaganidis we identify lax transformations between adjunctions and monads with commut