ترغب بنشر مسار تعليمي؟ اضغط هنا

A convolutional-neural-network estimator of CMB constraints on dark matter energy injection

230   0   0.0 ( 0 )
 نشر من قبل Jui-Lin Kuo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the impact of energy injection by dark matter annihilation on the cosmic microwave background power spectra can be apprehended via a residual likelihood map. By resorting to convolutional neural networks that can fully discover the underlying pattern of the map, we propose a novel way of constraining dark matter annihilation based on the Planck 2018 data. We demonstrate that the trained neural network can efficiently predict the likelihood and accurately place bounds on the annihilation cross-section in a $textit{model-independent}$ fashion. The machinery will be made public in the near future.



قيم البحث

اقرأ أيضاً

Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in a background of oscillating axion-like particles (ALPs) with the standard $g_{agamma},a,F_{mu u}tilde F^{mu u}/4$ coupling to photons. This leads to birefringence or rotation of linear polarization by ALP dark matter. Cosmic microwave background (CMB) birefringence limits $Delta alpha lesssim (1.0)^circ$ enable us to constrain the axion-photon coupling $g_{agamma} lesssim 10^{-17}-10^{-12},{rm GeV}^{-1}$, for ultra-light ALP masses $m_a sim 10^{-27} - 10^{-24}$ eV. This improves upon previous axion-photon coupling limits by up to four orders of magnitude. Future CMB observations could tighten limits by another one to two orders.
It has been suggested that late-universe dark matter decays can alleviate the tension between measurements of $H_0$ in the local universe and its value inferred from cosmic microwave background fluctuations. Decaying dark matter can potentially accou nt for this discrepancy as it reshuffles the energy density between matter and radiation and as a result allows dark energy to become dominant at earlier times. We show that the low multipoles amplitude of the cosmic microwave background anisotropy power spectrum severely constrains the feasibility of late-time decays as a solution to the $H_0$ tension.
We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with $m_{BH}gtrsim 5~M_{odot}$ are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.
Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9 temperature and polarization data for l <= 431 with Planck temperature data for 432 < l < 2500, ACT and SPT data for l > 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a `universal energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions, and provide updated deposition efficiency factors (f_eff) for 41 different dark matter models. Assuming perfect energy deposition (f_eff = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2-sigma level. Assuming a more generic efficiency of f_eff = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2-sigma level. These limits are a factor of ~2 improvement over those from WMAP9 data alone. These current constraints probe, but do not exclude, dark matter as an explanation for reported anomalous indirect detection observations from AMS-02/PAMELA and the Fermi Gamma-ray Inner Galaxy data. They also probe relevant models that would explain anomalous direct detection events from CDMS, CRESST, CoGeNT, and DAMA, as originating from a generic thermal WIMP. Projected constraints from the full Planck release should improve the current limits by another factor of ~2, but will not definitely probe these signals. The proposed CMB Stage IV experiment will more decisively explore the relevant regions and improve upon the Planck constraints by another factor of ~2.
The injection of secondary particles produced by Dark Matter (DM) annihilation at redshift 100<z<1000 affects the process of recombination, leaving an imprint on Cosmic Microwave Background (CMB) anisotropies. Here we provide a new assessment of the constraints set by CMB data on the mass and self-annihilation cross-section of DM particles. Our new analysis includes the most recent WMAP (7-year) and ACT data, as well as an improved treatment of the time-dependent coupling between the DM annihilation energy with the thermal gas. We show in particular that the improved measurement of the polarization signal places already stringent constraints on light DM particles, ruling out thermal WIMPs with mass less then about 10 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا