ترغب بنشر مسار تعليمي؟ اضغط هنا

ROOSTER: a machine-learning analysis tool for Kepler stellar rotation periods

127   0   0.0 ( 0 )
 نشر من قبل Sylvain Breton
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to understand stellar evolution, it is crucial to efficiently determine stellar surface rotation periods. An efficient tool to automatically determine reliable rotation periods is needed when dealing with large samples of stellar photometric datasets. The objective of this work is to develop such a tool. Random forest learning abilities are exploited to automate the extraction of rotation periods in Kepler light curves. Rotation periods and complementary parameters are obtained from three different methods: a wavelet analysis, the autocorrelation function of the light curve, and the composite spectrum. We train three different classifiers: one to detect if rotational modulations are present in the light curve, one to flag close binary or classical pulsators candidates that can bias our rotation period determination, and finally one classifier to provide the final rotation period. We test our machine learning pipeline on 23,431 stars of the Kepler K and M dwarf reference rotation catalog of Santos et al. (2019) for which 60% of the stars have been visually inspected. For the sample of 21,707 stars where all the input parameters are provided to the algorithm, 94.2% of them are correctly classified (as rotating or not). Among the stars that have a rotation period in the reference catalog, the machine learning provides a period that agrees within 10% of the reference value for 95.3% of the stars. Moreover, the yield of correct rotation periods is raised to 99.5% after visually inspecting 25.2% of the stars. Over the two main analysis steps, rotation classification and period selection, the pipeline yields a global agreement with the reference values of 92.1% and 96.9% before and after visual inspection. Random forest classifiers are efficient tools to determine reliable rotation periods in large samples of stars. [abridged]



قيم البحث

اقرأ أيضاً

We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample o f stars enables us to study the rotation periods as a function of spectral type. We find good agreement with previous studies and vsini measurements for F, G and K stars. Combining rotation periods, B-V color, and gyrochronology relations, we find that the cool stars in our sample are predominantly younger than ~1Gyr.
For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods of solar-like stars observed by the NASA Kepler mission. Different methods have been developed to track rotation signals in Kepler photometric light curves: time-frequency analysis based on wavelet techniques, autocorrelation and composite spectrum. We use the learning abilities of random forest classifiers to take decisions during two crucial steps of the analysis. First, given some input parameters, we discriminate the considered Kepler targets between rotating MS stars, non-rotating MS stars, red giants, binaries and pulsators. We then use a second classifier only on the MS rotating targets to decide the best data-analysis treatment.
We used a convolutional neural network to infer stellar rotation periods from a set of synthetic light curves simulated with realistic spot evolution patterns. We convolved these simulated light curves with real TESS light curves containing minimal i ntrinsic astrophysical variability to allow the network to learn TESS systematics and estimate rotation periods despite them. In addition to periods, we predict uncertainties via heteroskedastic regression to estimate the credibility of the period predictions. In the most credible half of the test data, we recover 10%-accurate periods for 46% of the targets, and 20%-accurate periods for 69% of the targets. Using our trained network, we successfully recover periods of real stars with literature rotation measurements, even past the 13.7-day limit generally encountered by TESS rotation searches using conventional period-finding techniques. Our method also demonstrates resistance to half-period aliases. We present the neural network and simulated training data, and introduce the software butterpy used to synthesize the light curves using realistic star spot evolution.
We use various method to extract surface rotation periods of Kepler targets exhibiting solar-like oscillations and compare their results.
We report rotation periods, variability characteristics, gyrochronological ages for ~950 of the Kepler Object of Interest host stars. We find a wide dispersion in the amplitude of the photometric variability as a function of rotation, likely indicati ng differences in the spot distribution among stars. We use these rotation periods in combination with published spectroscopic measurements of vsini and stellar parameters to derive the stellar inclination in the line-of-sight, and find a number of systems with possible spin-orbit misalignment. We additionally find several systems with close-in planet candidates whose stellar rotation periods are equal to or twice the planetary orbital period, indicative of possible tidal interactions between these planets and their parent stars. If these systems survive validation to become confirmed planets, they will provide important clues to the evolutionary history of these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا