ترغب بنشر مسار تعليمي؟ اضغط هنا

RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding

94   0   0.0 ( 0 )
 نشر من قبل Huda Hakami
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Embedding entities and relations of a knowledge graph in a low-dimensional space has shown impressive performance in predicting missing links between entities. Although progresses have been achieved, existing methods are heuristically motivated and theoretical understanding of such embeddings is comparatively underdeveloped. This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs) to derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail). Moreover, we show that marginal loss minimisation, a popular objective used in much prior work in KGE, follows naturally from the log-likelihood ratio maximisation under the probabilities estimated from the KGEs according to our theoretical relationship. We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph. Using the derived objective, accurate KGEs are learnt from FB15K237 and WN18RR benchmark datasets, providing empirical evidence in support of the theory.

قيم البحث

اقرأ أيضاً

End-to-end dialogue generation has achieved promising results without using handcrafted features and attributes specific for each task and corpus. However, one of the fatal drawbacks in such approaches is that they are unable to generate informative utterances, so it limits their usage from some real-world conversational applications. This paper attempts at generating diverse and informative responses with a variational generation model, which contains a joint attention mechanism conditioning on the information from both dialogue contexts and extra knowledge.
In the last few years, there has been a surge of interest in learning representations of entitiesand relations in knowledge graph (KG). However, the recent availability of temporal knowledgegraphs (TKGs) that contain time information for each fact cr eated the need for reasoning overtime in such TKGs. In this regard, we present a new approach of TKG embedding, TeRo, which defines the temporal evolution of entity embedding as a rotation from the initial time to the currenttime in the complex vector space. Specially, for facts involving time intervals, each relation isrepresented as a pair of dual complex embeddings to handle the beginning and the end of therelation, respectively. We show our proposed model overcomes the limitations of the existing KG embedding models and TKG embedding models and has the ability of learning and inferringvarious relation patterns over time. Experimental results on four different TKGs show that TeRo significantly outperforms existing state-of-the-art models for link prediction. In addition, we analyze the effect of time granularity on link prediction over TKGs, which as far as we know hasnot been investigated in previous literature.
68 - Yanyan Zou , Wei Lu 2019
An arithmetic word problem typically includes a textual description containing several constant quantities. The key to solving the problem is to reveal the underlying mathematical relations (such as addition and subtraction) among quantities, and the n generate equations to find solutions. This work presents a novel approach, Quantity Tagger, that automatically discovers such hidden relations by tagging each quantity with a sign corresponding to one type of mathematical operation. For each quantity, we assume there exists a latent, variable-sized quantity span surrounding the quantity token in the text, which conveys information useful for determining its sign. Empirical results show that our method achieves 5 and 8 points of accuracy gains on two datasets respectively, compared to prior approaches.
In this work, we propose to model the interaction between visual and textual features for multi-modal neural machine translation (MMT) through a latent variable model. This latent variable can be seen as a multi-modal stochastic embedding of an image and its description in a foreign language. It is used in a target-language decoder and also to predict image features. Importantly, our model formulation utilises visual and textual inputs during training but does not require that images be available at test time. We show that our latent variable MMT formulation improves considerably over strong baselines, including a multi-task learning approach (Elliott and Kadar, 2017) and a conditional variational auto-encoder approach (Toyama et al., 2016). Finally, we show improvements due to (i) predicting image features in addition to only conditioning on them, (ii) imposing a constraint on the minimum amount of information encoded in the latent variable, and (iii) by training on additional target-language image descriptions (i.e. synthetic data).
Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especiall y when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا