ترغب بنشر مسار تعليمي؟ اضغط هنا

On relative metric mean dimension with potential and variational principles

89   0   0.0 ( 0 )
 نشر من قبل Weisheng Wu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Weisheng Wu




اسأل ChatGPT حول البحث

In this article, we introduce a notion of relative mean metric dimension with potential for a factor map $pi: (X,d, T)to (Y, S)$ between two topological dynamical systems. To link it with ergodic theory, we establish four variational principles in terms of metric entropy of partitions, Shapiras entropy, Katoks entropy and Brin-Katok local entropy respectively. Some results on local entropy with respect to a fixed open cover are obtained in the relative case. We also answer an open question raised by Shi cite{Shi} partially for a very well-partitionable compact metric space, and in general we obtain a variational inequality involving box dimension of the space. Corresponding inner variational principles given an invariant measure of $(Y,S)$ are also investigated.

قيم البحث

اقرأ أيضاً

64 - Ruxi Shi 2021
In this note, we show several variational principles for metric mean dimension. First we prove a variational principles in terms of Shapiras entropy related to finite open covers. Second we establish a variational principle in terms of Katoks entropy . Finally using these two variational principles we develop a variational principle in terms of Brin-Katok local entropy.
80 - Hanfeng Li 2011
We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-Lindenstrauss-Weiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing co ntinuous actions of countable sofic groups with infinite entropy.
108 - Bingbing Liang 2020
We introduce some notions of conditional mean dimension for a factor map between two topological dynamical systems and discuss their properties. With the help of these notions, we obtain an inequality to estimate the mean dimension of an extension sy stem. The conditional mean dimension for $G$-extensions are computed. We also exhibit some applications in the dynamical embedding problems.
132 - Hanfeng Li , Bingbing Liang 2013
We introduce an invariant, called mean rank, for any module M of the integral group ring of a discrete amenable group $Gamma$, as an analogue of the rank of an abelian group. It is shown that the mean dimension of the induced $Gamma$-action on the Po ntryagin dual of M, the mean rank of M, and the von Neumann-Luck rank of M all coincide. As applications, we establish an addition formula for mean dimension of algebraic actions, prove the analogue of the Pontryagin-Schnirelmnn theorem for algebraic actions, and show that for elementary amenable groups with an upper bound on the orders of finite subgroups, algebraic actions with zero mean dimension are inverse limits of finite entropy actions.
140 - David Burguet , Ruxi Shi 2021
We investigate the mean dimension of a cellular automaton (CA for short) with a compact non-discrete space of states. A formula for the mean dimension is established for (near) strongly permutative, permutative algebraic and unit one-dimensional au tomata. In higher dimensions, a CA permutative algebraic or having a spaceship has infinite mean dimension. However, building on Meyerovitchs example, we give an example of algebraic surjective cellular automaton with positive finite mean dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا