ترغب بنشر مسار تعليمي؟ اضغط هنا

A Data-Driven Modeling Framework of Time-Dependent Switched Dynamical Systems via Extreme Learning Machine

133   0   0.0 ( 0 )
 نشر من قبل Weiming Xiang
 تاريخ النشر 2021
والبحث باللغة English
 تأليف Weiming Xiang




اسأل ChatGPT حول البحث

In this work, a data-driven modeling framework of switched dynamical systems under time-dependent switching is proposed. The learning technique utilized to model system dynamics is Extreme Learning Machine (ELM). First, a method is developed for the detection of the switching occurrence events in the training data extracted from system traces. The training data thus can be segmented by the detected switching instants. Then, ELM is used to learn the system dynamics of subsystems. The learning process includes segmented trace data merging and subsystem dynamics modeling. Due to the specific learning structure of ELM, the modeling process is formulated as an iterative Least-Squares (LS) optimization problem. Finally, the switching sequence can be reconstructed based on the switching detection and segmented trace merging results. An example of the data-driven modeling DC-DC converter is presented to show the effectiveness of the developed approach.

قيم البحث

اقرأ أيضاً

The paper introduces novel methodologies for the identification of coefficients of switched autoregressive and switched autoregressive exogenous linear models. We consider cases which systems outputs are contaminated by possibly large values of noise for the both case of measurement noise in switched autoregressive models and process noise in switched autoregressive exogenous models. It is assumed that only partial information on the probability distribution of the noise is available. Given input-output data, we aim at identifying switched system coefficients and parameters of the distribution of the noise, which are compatible with the collected data. We demonstrate the efficiency of the proposed approach with several academic examples. The method is shown to be extremely effective in the situations where a large number of measurements is available; cases in which previous approaches based on polynomial or mixed-integer optimization cannot be applied due to very large computational burden.
In this paper, we consider the data-driven model invalidation problem for Lipschitz continuous systems, where instead of given mathematical models, only prior noisy sampled data of the systems are available. We show that this data-driven model invali dation problem can be solved using a tractable feasibility check. Our proposed approach consists of two main components: (i) a data-driven abstraction part that uses the noisy sampled data to over-approximate the unknown Lipschitz continuous dynamics with upper and lower functions, and (ii) an optimization-based model invalidation component that determines the incompatibility of the data-driven abstraction with a newly observed length-T output trajectory. Finally, we discuss several methods to reduce the computational complexity of the algorithm and demonstrate their effectiveness with a simulation example of swarm intent identification.
In this paper, we study the structural state and input observability of continuous-time switched linear time-invariant systems and unknown inputs. First, we provide necessary and sufficient conditions for their structural state and input observabilit y that can be efficiently verified in $O((m(n+p))^2)$, where $n$ is the number of state variables, $p$ is the number of unknown inputs, and $m$ is the number of modes. Moreover, we address the minimum sensor placement problem for these systems by adopting a feed-forward analysis and by providing an algorithm with a computational complexity of $ O((m(n+p)+alpha)^{2.373})$, where $alpha$ is the number of target strongly connected components of the systems digraph representation. Lastly, we explore different assumptions on both the system and unknown inputs (latent space) dynamics that add more structure to the problem, and thereby, enable us to render algorithms with lower computational complexity, which are suitable for implementation in large-scale systems.
The security in information-flow has become a major concern for cyber-physical systems (CPSs). In this work, we focus on the analysis of an information-flow security property, called opacity. Opacity characterizes the plausible deniability of a syste ms secret in the presence of a malicious outside intruder. We propose a methodology of checking a notion of opacity, called approximate initial-state opacity, for networks of discrete-time switched systems. Our framework relies on compositional constructions of finite abstractions for networks of switched systems and their so-called approximate initial-state opacity-preserving simulation functions (InitSOPSFs). Those functions characterize how close concrete networks and their finite abstractions are in terms of the satisfaction of approximate initial-state opacity. We show that such InitSOPSFs can be obtained compositionally by assuming some small-gain type conditions and composing so-called local InitSOPSFs constructed for each subsystem separately. Additionally, assuming certain stability property of switched systems, we also provide a technique on constructing their finite abstractions together with the corresponding local InitSOPSFs. Finally, we illustrate the effectiveness of our results through an example.
272 - Lu Shi , Hanzhe Teng , Xinyue Kan 2020
The paper introduces a Data-driven Hierarchical Control (DHC) structure to improve performance of systems operating under the effect of system and/or environment uncertainty. The proposed hierarchical approach consists of two parts: 1) A data-driven model identification component to learn a linear approximation between reference signals given to an existing lower-level controller and uncertain time-varying plant outputs. 2) A higher-level controller component that utilizes the identified approximation and wraps around the existing controller for the system to handle modeling errors and environment uncertainties during system deployment. We derive loose and tight bounds for the identified approximations sensitivity to noisy data. Further, we show that adding the higher-level controller maintains the original systems stability. A benefit of the proposed approach is that it requires only a small amount of observations on states and inputs, and it thus works online; that feature makes our approach appealing to robotics applications where real-time operation is critical. The efficacy of the DHC structure is demonstrated in simulation and is validated experimentally using aerial robots with approximately-known mass and moment of inertia parameters and that operate under the influence of ground effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا