ﻻ يوجد ملخص باللغة العربية
We present piXedfit, pixelized spectral energy distribution (SED) fitting, a Python package that provides tools for analyzing spatially resolved properties of galaxies using multiband imaging data alone or in combination with integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the spatially resolved SED fitting. The SED fitting module uses the Bayesian inference technique with two kinds of posteriors sampling methods: Markov Chain Monte Carlo (MCMC) and random densely-sampling of parameter space (RDSPS). We test the performance of the SED fitting module using mock SEDs of simulated galaxies from IllustrisTNG. The SED fitting with both posteriors sampling methods can recover physical properties and star formation histories of the IllustrisTNG galaxies well. We further test the performance of piXedfit modules by analyzing 20 galaxies observed by the CALIFA and MaNGA surveys. The data comprises of 12-band imaging data from GALEX, SDSS, 2MASS, and WISE, and the IFS data from CALIFA or MaNGA. piXedfit can spatially match (in resolution and sampling) of the imaging and IFS data. By fitting only the photometric SEDs, piXedfit can predict the spectral continuum, $text{D}_{rm n}4000$, $H_{alpha}$, and $H_{beta}$ well. The star formation rate (SFR) derived by piXedfit is consistent with that derived from $H_{alpha}$ emission. The RDSPS method gives equally good fitting results as the MCMC and it is much faster than the MCMC. piXedfit is a versatile tool equipped with a parallel computing module for efficient analysis of large datasets, and will be made publicly available (https://github.com/aabdurrouf/piXedfit).
We present MCSED, a new spectral energy distribution (SED)-fitting code, which mates flexible stellar evolution calculations with the Markov Chain Monte Carlo algorithms of the software package emcee. MCSED takes broad, intermediate, and narrow-band
The sensitivity and angular resolution of photometric surveys executed by the Hubble Space Telescope (HST) enable studies of individual star clusters in galaxies out to a few tens of megaparsecs. The fitting of spectral energy distributions (SEDs) of
The physical parameters of galaxies and/or AGNs can be derived by fitting their multi-band spectral energy distributions (SEDs). By using CIGALE code, we perform multi-band SED fitting (from ultraviolet to infrared) for 791 X-ray sources (518 AGNs an
Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up
The spectral energy distribution of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is