ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving Challenging Large Scale QAPs

65   0   0.0 ( 0 )
 نشر من قبل Sunyoung Kim
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator (UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results. Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time.

قيم البحث

اقرأ أيضاً

We consider solving high-order semidefinite programming (SDP) relaxations of nonconvex polynomial optimization problems (POPs) that admit rank-one optimal solutions. Existing approaches, which solve the SDP independently from the POP, either cannot s cale to large problems or suffer from slow convergence due to the typical degeneracy of such SDPs. We propose a new algorithmic framework, called SpecTrahedral pRoximal gradIent Descent along vErtices (STRIDE), that blends fast local search on the nonconvex POP with global descent on the convex SDP. Specifically, STRIDE follows a globally convergent trajectory driven by a proximal gradient method (PGM) for solving the SDP, while simultaneously probing long, but safeguarded, rank-one strides, generated by fast nonlinear programming algorithms on the POP, to seek rapid descent. We prove STRIDE has global convergence. To solve the subproblem of projecting a given point onto the feasible set of the SDP, we reformulate the projection step as a continuously differentiable unconstrained optimization and apply a limited-memory BFGS method to achieve both scalability and accuracy. We conduct numerical experiments on solving second-order SDP relaxations arising from two important applications in machine learning and computer vision. STRIDE dominates a diverse set of five existing SDP solvers and is the only solver that can solve degenerate rank-one SDPs to high accuracy (e.g., KKT residuals below 1e-9), even in the presence of millions of equality constraints.
We consider the classic School Bus Routing Problem (SBRP) with a multi modal generalization, where students are either picked up by a fleet of school buses or transported by an alternate transportation mode, subject to a set of constraints. The const raints that are typically imposed for school buses are a maximum fleet size, a maximum walking distance to a pickup point and a maximum commute time for each student. This is a special case of the Vehicle Routing Problem (VRP) with a common destination. We propose a decomposition approach for solving this problem based on the existing notion of a shareability network, which has been used recently in the context of dynamic ridepooling problems. Moreover, we simplify the problem by introducing the connection between the SBRP and the weighted set covering problem (WSCP). To scale this method to large-scale problem instances, we propose i) a node compression method for the shareability network based decomposition approach, and ii) heuristic-based edge compression techniques that perform well in practice. We show that the compressed problem leads to an Integer Linear Programming (ILP) of reduced dimensionality that can be solved efficiently using off-the-shelf ILP solvers. Numerical experiments on small-scale, large-scale and benchmark networks are used to evaluate the performance of our approach and compare it to existing large-scale SBRP solving techniques.
74 - Yuezun Li , Xin Yang , Pu Sun 2019
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for large-scale datasets. However, cu rrent DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5,639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
This paper studies a strategy for data-driven algorithm design for large-scale combinatorial optimization problems that can leverage existing state-of-the-art solvers in general purpose ways. The goal is to arrive at new approaches that can reliably outperform existing solvers in wall-clock time. We focus on solving integer programs, and ground our approach in the large neighborhood search (LNS) paradigm, which iteratively chooses a subset of variables to optimize while leaving the remainder fixed. The appeal of LNS is that it can easily use any existing solver as a subroutine, and thus can inherit the benefits of carefully engineered heuristic or complete approaches and their software implementations. We show that one can learn a good neighborhood selector using imitation and reinforcement learning techniques. Through an extensive empirical validation in bounded-time optimization, we demonstrate that our LNS framework can significantly outperform compared to state-of-the-art commercial solvers such as Gurobi.
The offset optimization problem seeks to coordinate and synchronize the timing of traffic signals throughout a network in order to enhance traffic flow and reduce stops and delays. Recently, offset optimization was formulated into a continuous optimi zation problem without integer variables by modeling traffic flow as sinusoidal. In this paper, we present a novel algorithm to solve this new formulation to near-global optimality on a large-scale. Specifically, we solve a convex relaxation of the nonconvex problem using a tree decomposition reduction, and use randomized rounding to recover a near-global solution. We prove that the algorithm always delivers solutions of expected value at least 0.785 times the globally optimal value. Moreover, assuming that the topology of the traffic network is tree-like, we prove that the algorithm has near-linear time complexity with respect to the number of intersections. These theoretical guarantees are experimentally validated on the Berkeley, Manhattan, and Los Angeles traffic networks. In our numerical results, the empirical time complexity of the algorithm is linear, and the solutions have objectives within 0.99 times the globally optimal value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا