ﻻ يوجد ملخص باللغة العربية
We introduce a new class of $mathfrak{sl}_2$-triples in a complex simple Lie algebra $mathfrak{g}$, which we call magical. Such an $mathfrak{sl}_2$-triple canonically defines a real form and various decompositions of $mathfrak{g}$. Using this decomposition data, we explicitly parameterize special connected components of the moduli space of Higgs bundles on a compact Riemann surface $X$ for an associated real Lie group, hence also of the corresponding character variety of representations of $pi_1X$ in the associated real Lie group. This recovers known components when the real group is split, Hermitian of tube type, or $mathrm{SO}_{p,q}$ with $1<pleq q$, and also constructs previously unknown components for the quaternionic real forms of $mathrm{E}_6$, $mathrm{E}_7$, $mathrm{E}_8$ and $mathrm{F}_4$. The classification of magical $mathfrak{sl}_2$-triples is shown to be in bijection with the set of $Theta$-positive structures in the sense of Guichard--Wienhard, thus the mentioned parameterization conjecturally detects all examples of higher Teichmuller spaces. Indeed, we discuss properties of the surface group representations obtained from these Higgs bundle components and their relation to $Theta$-positive Anosov representations, which indicate that this conjecture holds.
Some connected components of a moduli space are mundane in the sense that they are distinguished only by obvious topological invariants or have no special characteristics. Others are more alluring and unusual either because they are not detected by p
We introduce $Theta$-positivity, a new notion of positivity in real semisimple Lie groups. The notion of $Theta$-positivity generalizes at the same time Lusztigs total positivity in split real Lie groups as well as well known concepts of positivity i
An increasingly important area of interest for mathematicians is the study of Abelian differentials. This growing interest can be attributed to the interdisciplinary role this subject plays in modern mathematics, as various problems of algebraic geom
We derive generalizations of McShanes identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen which generalize the notion of horocycle lengths. In parti
Let $X$ be a compact connected Riemann surface, $D, subset, X$ a reduced effective divisor, $G$ a connected complex reductive affine algebraic group and $H_x, subsetneq, G_x$ a Zariski closed subgroup for every $x, in, D$. A framed principal $G$--bun