ﻻ يوجد ملخص باللغة العربية
The understanding of nonlinear, high dimensional flows, e.g, atmospheric and ocean flows, is critical to address the impacts of global climate change. Data Assimilation techniques combine physical models and observational data, often in a Bayesian framework, to predict the future state of the model and the uncertainty in this prediction. Inherent in these systems are noise (Gaussian and non-Gaussian), nonlinearity, and high dimensionality that pose challenges to making accurate predictions. To address these issues we investigate the use of both model and data dimension reduction based on techniques including Assimilation in Unstable Subspaces, Proper Orthogonal Decomposition, and Dynamic Mode Decomposition. Algorithms that take advantage of projected physical and data models may be combined with Data Analysis techniques such as Ensemble Kalman Filter and Particle Filter variants. The projected Data Assimilation techniques are developed for the optimal proposal particle filter and applied to the Lorenz96 and Shallow Water Equations to test the efficacy of our techniques in high dimensional, nonlinear systems.
The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set
We propose a general --- i.e., independent of the underlying equation --- registration method for parameterized Model Order Reduction. Given the spatial domain $Omega subset mathbb{R}^d$ and a set of snapshots ${ u^k }_{k=1}^{n_{rm train}}$ over $Ome
We discover that deep ReLU neural network classifiers can see a low-dimensional Riemannian manifold structure on data. Such structure comes via the local data matrix, a variation of the Fisher information matrix, where the role of the model parameter
In this paper we consider a tank containing fluid and we want to estimate the horizontal currents when the fluid surface height is measured. The fluid motion is described by shallow water equations in two horizontal dimensions. We build a simple non-
Recent research reveals that deep learning is an effective way of solving high dimensional Hamilton-Jacobi-Bellman equations. The resulting feedback control law in the form of a neural network is computationally efficient for real-time applications o