ﻻ يوجد ملخص باللغة العربية
Coherent exchange of single photons is at the heart of applied Quantum Optics. The negatively-charged silicon vacancy center in diamond is among most promising sources for coherent single photons. Its large Debye-Waller factor, short lifetime and extraordinary spectral stability is unique in the field of solid-state single photon sources. However, the excitation and detection of individual centers requires high numerical aperture optics which, combined with the need for cryogenic temperatures, puts technical overhead on experimental realizations. Here, we investigate a hybrid quantum photonics platform based on silicon-vacancy center in nanodiamonds and metallic bullseye antenna to realize a coherent single-photon interface that operates efficiently down to low numerical aperture optics with an inherent resistance to misalignment.
Detecting spatial and temporal information of individual photons by using single-photon-detector (SPD) arrays is critical to applications in spectroscopy, communication, biological imaging, astronomical observation, and quantum-information processing
A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown
We propose a field-based design for dielectric antennas to interface diamond color centers with a Gaussian propagating far field. This antenna design enables an efficient spin-photon interface with a Purcell factor exceeding 400 and a 93% mode overla
Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single photon sources and thus es
We report on the isolation of single SiV$^-$ centers in nanodiamonds. We observe the fine-structure of single SiV$^-$ center with improved inhomogeneous ensemble linewidth below the excited state splitting, stable optical transitions, good polarizati