ﻻ يوجد ملخص باللغة العربية
We demonstrate detection of a vector light shift (VLS) using the quantum lock-in method. The method offers precise and accurate VLS measurement without being affected by real magnetic field fluctuations. We detect a VLS on a Bose--Einstein condensate (BEC) of $^{87}$Rb atoms caused by an optical trap beam with a resolution less than 1 Hz. We also demonstrate elimination of a VLS by controlling the beam polarization to realize a long coherence time of a transversally polarized $F$ = 2 BEC. Quantum lock-in VLS detection should find wide application, including the study of spinor BECs, electric-dipole moment searches, and precise magnetometry.
We report the observation and manipulation of heteronuclear spin dynamics in a spin-1 mixture of ultracold $^{87}$Rb and $^{23}$Na atoms. The dynamics is driven by the interspecies spin-dependent interaction and shows a pronounced dependence on magne
We study the Bose-polaron problem in a nonequilibrium setting, by considering an impurity embedded in a quantum fluid of light realized by exciton-polaritons in a microcavity, subject to a coherent drive and dissipation on account of pump and cavity
We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a magic polarization for which the polarizabilities of t
We investigate the non-equilibrium quantum dynamics of a canonical light-matter system, namely the Dicke model, when the light-matter interaction is ramped up and down through a cycle across the quantum phase transition. Our calculations reveal a ric
The Hartree energy shift is calculated for a unitary Fermi gas. By including the momentum dependence of the scattering amplitude explicitly, the Hartree energy shift remains finite even at unitarity. Extending the theory also for spin-imbalanced syst