ﻻ يوجد ملخص باللغة العربية
The transmission of Lyman-{alpha} (Ly{alpha}) in the spectra of distant quasars depends on the density, temperature, and ionization state of the intergalactic medium (IGM). Therefore, high-redshift (z > 5) Ly{alpha} forests could be invaluable in studying the late stages of the epoch of reionization (EoR), as well as properties of the sources that drive it. Indeed, high-quality quasar spectra have now firmly established the existence of large-scale opacity fluctuations at z > 5, whose physical origins are still debated. Here we introduce a Bayesian framework capable of constraining the EoR and galaxy properties by forward-modelling the high-z Ly{alpha} forest. Using priors from galaxy and CMB observations, we demonstrate that the final overlap stages of the EoR (when >95% of the volume was ionized) should occur at z < 5.6, in order to reproduce the large-scale opacity fluctuations seen in forest spectra. However, it is the combination of patchy reionization and the inhomogeneous UV background that produces the longest Gunn-Peterson troughs. Ly{alpha} forest observations tighten existing constraints on the characteristic ionizing escape fraction of galaxies, with the combined observations suggesting f_{rm esc} approx 7^4_3%, and disfavoring a strong evolution with the galaxys halo (or stellar) mass.
The impact of cosmic reionization on the Ly$alpha$ forest power spectrum has recently been shown to be significant even at low redshifts ($z sim 2$). This memory of reionization survives cosmological time scales because high-entropy mean-density gas
We use a set of AMR hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to study how inhomogeneous HeII reionization affects the intergalactic medium (IGM). We propagate radiation from active galactic nuclei (AGNs) consi
We investigate spectroscopically measured Ly{alpha} equivalent widths and escape fractions of 244 sources of which 95 are Lyman Break Galaxies (LBGs) and 106 Lyman Alpha Emitters (LAEs) at z~4.2, z~4.8, and z~5.6 selected from intermediate and narrow
Recent observations of the Lyman-alpha forest show large-scale spatial variations in the intergalactic Lyman-alpha opacity that grow rapidly with redshift at z>5, far in excess of expectations from empirically motivated models. Previous studies have
We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$alpha$ forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two m