ﻻ يوجد ملخص باللغة العربية
Ultra-cold atoms provide ideal platforms for interferometry. The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time, which enable high accuracy and sensitivity to measurement. Here, we review our efforts to improve the performance of the interferometer. We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice. Compared with traditional ones, this shortcut method can reduce manipulation time by up to three orders of magnitude. We construct a matter-wave Ramsey interferometer for trapped motional quantum states and significantly increase its coherence time by one order of magnitude with an echo technique based on this method. Efforts have also been made to enhance the resolution by multimode scheme. Application of a noise-resilient multi-component interferometer shows that increasing the number of paths could sharpen the peaks in the time-domain interference fringes, which leads to a resolution nearly twice compared with that of a conventional double-path two-mode interferometer. With the shortcut method mentioned above, improvement of the momentum resolution could also be fulfilled, which leads to atomic momentum patterns less than 0.6 $hbar k_L$. To identify and remove systematic noises, we introduce the methods based on the principal component analysis (PCA) that reduce the noise in detection close to the $1/sqrt{2}$ of the photon-shot noise and separate and identify or even eliminate noises. Furthermore, we give a proposal to measure precisely the local gravity acceleration within a few centimeters based on our study of ultracold atoms in precision measurements.
We study the horizontal expansion of vertically confined ultra-cold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by
Quantum decay of a relativistic scalar field from a false vacuum is a fundamental idea in quantum field theory. It is relevant to models of the early Universe, where the nucleation of bubbles gives rise to an inflationary universe and the creation of
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), in which a Bose-Einstein condensate is created in a toroidal trap and set into ro
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems,
We start by reviewing the concept of gauge invariance in quantum mechanics, for Abelian and Non-Ableian cases. Then we idescribe how the various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical w