ﻻ يوجد ملخص باللغة العربية
Fixed points in three dimensions described by conformal field theories with $MN_{m,n}= O(m)^nrtimes S_n$ global symmetry have extensive applications in critical phenomena. Associated experimental data for $m=n=2$ suggest the existence of two non-trivial fixed points, while the $varepsilon$ expansion predicts only one, resulting in a puzzling state of affairs. A recent numerical conformal bootstrap study has found two kinks for small values of the parameters $m$ and $n$, with critical exponents in good agreement with experimental determinations in the $m=n=2$ case. In this paper we investigate the fate of the corresponding fixed points as we vary the parameters $m$ and $n$. We find that one family of kinks approaches a perturbative limit as $m$ increases, and using large spin perturbation theory we construct a large $m$ expansion that fits well with the numerical data. This new expansion, akin to the large $N$ expansion of critical $O(N)$ models, is compatible with the fixed point found in the $varepsilon$ expansion. For the other family of kinks, we find that it persists only for $n=2$, where for large $m$ it approaches a non-perturbative limit with $Delta_phiapprox 0.75$. We investigate the spectrum in the case $MN_{100,2}$ and find consistency with expectations from the lightcone bootstrap.
Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the
We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of $log t$ term. Our analysis covers the ent
We study generalized symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. This paper follows our companion paper on gapped phases and anomalies associated with these symmetries. In the present work we fo
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform
We develop the analytic bootstrap in several directions. First, we discuss the appearance of nonperturbative effects in the Lorentzian inversion formula, which are exponentially suppressed at large spin but important at finite spin. We show that thes