ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory Overview of Heavy Exotic Spectroscopy

68   0   0.0 ( 0 )
 نشر من قبل Ciaran Hughes Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ciaran Hughes




اسأل ChatGPT حول البحث

This proceeding broadly overviews the current landscape of heavy exotic spectroscopy. Such work includes the composition of certain X, Y , and Z states, and proceeds to discuss tetraquarks made exclusively of four quarks.

قيم البحث

اقرأ أيضاً

71 - C. Hanhart 2017
Some of the currently most popular conjectures for the structure of the recently discovered heavy mesons that do not find a place in the quark model quarkonium spectrum are sketched. Furthermore, some observables are identified that should allow one to identify the most prominent components of individual states.
The spectroscopic parameters and decay channels of the scalar tetraquark $ T_{bb;overline{u}overline{s}}^{-}$ (in what follows $T_{b:overline{s} }^{-} $) are investigated. The mass and coupling of the $T_{b:s}^{-}$ are calculated using the two-point sum rules by taking into account quark, gluon and mixed vacuum condensates up to dimension 10. Our result for its mass $m=(10250 pm 270)~mathrm{MeV}$ demonstrates that $T_{b:overline{s}}^{-} $ is stable against the strong and electromagnetic decays. Therefore to find the width and mean lifetime of the $T_{b:overline{s}}^{-}$, we explore its dominant weak decays generated by the transition $b to W^{-}c$. These channels embrace the semileptonic decay $T_{b:overline{s}}^{-} to Z_{bc;overline{u}overline{s}}^{0}loverline{ u }_{l}$ and nonleptonic modes $T_{b:overline{s}}^{-} to Z_{bc;overline{ u}overline{s}}^{0}pi^{-}(K^{-}, D^{-}, D_s^{-})$, which at the final state contain the scalar tetraquark $Z_{bc;overline{u}overline{s}}^{0}$. Key quantities to compute partial widths of the weak decays are the form factors $G_1(q^2)$ and $G_2(q^2)$: they determine differential rate $dGamma/dq^2$ of the semileptonic and partial widths of the nonleptonic processes, respectively. These form factors are extracted from relevant three-point sum rules at momentum transfers $q^2$ accessible for such analysis. By means of the fit functions $F_{1(2)}(q^2)$ they are extrapolated to cover the whole integration region $m_l^{2}leq q2leq(m-widetilde m)^2$, where $widetilde m$ is the mass of $Z_{bc;overline{u}overline{s}}^{0}$. Predictions for the full width $Gamma _{mathrm{full}}=(15.21pm 2.59)times 10^{-10}~mathrm{ MeV}$ and mean lifetime $4.33_{-0.63}^{+0.89}times 10^{-13}~mathrm{s}$ of the $T_{b:s}^{-} $ are useful for experimental and theoretical investigations of this exotic meson.
78 - R.M Albuquerque 2018
We use QCD spectral sum rules (QSSR) and the factorization properties of molecule and four-quark currents to estimate the masses and couplings of the 0+ and 1+ molecules and four-quark at N2LO of PT QCD. We include in the OPE the contributions of non -perturbative condensates up to dimension-six. Within the Laplace sum rules approach (LSR) and in the MS-scheme, we summarize our results in Table 2, which agree within the errors with some of the observed XZ-like molecules or/and four-quark. Couplings of these states to the currents are also extracted. Our results are improvements of the LO ones in the existing literature.
The spectrum of hadronic molecules composed of heavy-antiheavy charmed hadrons has been obtained in our previous work. The potentials are constants at the leading order, which are estimated from resonance saturation. The experimental candidates of ha dronic molecules, say $X(3872)$, $Y(4260)$, three $P_c$ states and $P_{cs}(4459)$, fit the spectrum well. The success in describing the pattern of heavy-antiheavy hadronic molecules stimulates us to give more predictions for the heavy-heavy cases, which are less discussed in literature than the heavy-antiheavy ones. Given that the heavy-antiheavy hadronic molecules, several of which have strong experimental evidence, emerge from the dominant constant interaction from resonance saturation, we find that the existence of many heavy-heavy hadronic molecules is natural. Among these predicted heavy-heavy states we highlight the $DD^*$ molecule and the $D^{(*)}Sigma_c^{(*)}$ molecules, which are the partners of famous $X(3872)$ and $P_c$ states. Quite recently, LHCb collaboration reported a doubly charmed tetraquark state, $T_{cc}$, which is in line with our results for the $DD^*$ molecule. With the first experimental signal of this new kind of exotic states, the upcoming update of the LHCb experiment as well as other experiments will provide more chances of observing the heavy-heavy hadronic molecules.
We use the Laplace/Borel sum rules (LSR) and the finite energy/local duality sum rules (FESR) to investigate the non-strange $udbar ubar d$ and hidden-strange $usbar ubar s$ tetraquark states with exotic quantum numbers $J^{PC}=0^{+-}$ . We systemati cally construct all eight possible tetraquark currents in this channel without covariant derivative operator. Our analyses show that the $udbar ubar d$ systems have good behaviour of sum rule stability and expansion series convergence in both the LSR and FESR analyses, while the LSR for the $usbar ubar s$ states do not associate with convergent OPE series in the stability regions and only the FESR can provide valid results. We give the mass predictions $1.43pm0.09$ GeV and $1.54pm0.12$ GeV for the $udbar ubar d$ and $usbar ubar s$ tetraquark states, respectively. Our results indicate that the $0^{+-}$ isovector $usbar ubar s$ tetraquark may only decay via weak interaction mechanism, e.g. $X_{usbar{u}bar{s}}to Kpipi$, since its strong decays are forbidden by kinematics and the symmetry constraints on the exotic quantum numbers. It is predicted to be very narrow, if it does exist. The $0^{+-}$ isoscalar $usbar ubar s$ tetraquark is also predicted to be not very wide because its dominate decay mode $X_{usbar{u}bar{s}}tophipipi$ is in $P$-wave.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا