ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental decoherence in molecule interferometry

62   0   0.0 ( 0 )
 نشر من قبل Klaus Hornberger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex molecules are intriguing objects at the interface between quantum and classical phenomena. Compared to the electrons, neutrons, or atoms studied in earlier matter-wave experiments, they feature a much more complicated internal structure, but can still behave as quantum objects in their center-of-mass motion. Molecules may involve a large number of vibrational modes and highly excited rotational states, they can emit thermal photons, electrons, or even atoms, and they exhibit large cross sections for collisional interactions with residual background gases. This makes them ideal candidates for decoherence experiments which we review in this contribution.

قيم البحث

اقرأ أيضاً

129 - Marco Genovese 2021
Optical quantum interferometry represents the oldest example of quantum metrology and it is at the source of quantum technologies. The original squeezed state scheme is now a significant element of the last version of gravitational wave detectors and various additional uses have been proposed. Further quantum enhanced schemes, from SU(1,1) interferometer to twin beam correlation interferometry, have also reached the stage of proof of principle experiments enlarging the field of experimental quantum interferometry and paving the way to several further applications ranging from Planck scale signals search to small effects detection. In this review paper I introduce these experimental achievements, describing their schemes, advantages, applications and possible further developments.
Interferometric signals are degraded by decoherence, which encompasses dephasing, mixing and any distinguishing which-path information. These three paradigmatic processes are fundamentally different, but, for coherent, single-photon and $N00N$-states , they degrade interferometric visibility in the very same way, which impedes the diagnosis of the cause for reduced visibility in a single experiment. We introduce a versatile formalism for many-boson interferometry based on double-sided Feynman diagrams, which we apply to a protocol for differential decoherence diagnosis: Twin-Fock states |N,N> with $N ge 2$ reveal to which extent decoherence is due to path distinguishability or to mixing, while double-Fock superpositions $|N:M> = (|N,M> + |M,N>)/sqrt{2} $ with $N > M >0$ additionally witness the degree of dephasing. Hence, double-Fock superposition interferometry permits the differential diagnosis of decoherence processes in a single experiment, indispensable for the assessment of interferometers.
Franson interferometry is a well-known quantum measurement technique for probing photon-pair frequency correlations that is often used to certify time-energy entanglement. We demonstrate the complementary technique in the time basis, called conjugate -Franson interferometry, that measures photon-pair arrival-time correlations, thus providing a valuable addition to the quantum toolbox. We obtain a conjugate-Franson interference visibility of $96pm 1$% without background subtraction for entangled photon pairs generated by spontaneous parametric down-conversion. Our measured result surpasses the quantum-classical threshold by 25 standard deviations and validates the conjugate-Franson interferometer (CFI) as an alternative method for certifying time-energy entanglement. Moreover, the CFI visibility is a function of the biphotons joint temporal intensity and is therefore sensitive to that states spectral phase variation, something which is not the case for Franson interferometry or Hong-Ou-Mandel interferometry. We highlight the CFIs utility by measuring its visibilities for two different biphoton states, one without and the other with spectral phase variation, and observing a 21% reduction in the CFI visibility for the latter. The CFI is potentially useful for applications in areas of photonic entanglement, quantum communications, and quantum networking.
Erik Verlindes theory of entropic gravity [arXiv:1001.0785], postulating that gravity is not a fundamental force but rather emerges thermodynamically, has garnered much attention as a possible resolution to the quantum gravity problem. Some have rule d this theory out on grounds that entropic forces are by nature noisy and entropic gravity would therefore display far more decoherence than is observed in ultra-cold neutron experiments. We address this criticism by modeling linear gravity acting on small objects as an open quantum system. In the strong coupling limit, when the models unitless free parameter $sigma$ goes to infinity, the entropic master equation recovers conservative gravity. We show that the proposed master equation is fully compatible with the textit{q}textsc{Bounce} experiment for ultra-cold neutrons as long as $sigmagtrsim 250$ at $90%$ confidence. Furthermore, the entropic master equation predicts energy increase and decoherence on long time scales and for large masses, phenomena which tabletop experiments could test. In addition, comparing entropic gravitys energy increase to that of the Di{o}si-Penrose model for gravity induced decoherence indicates that the two theories are incompatible. These findings support the theory of entropic gravity, motivating future experimental and theoretical research.
Taming decoherence is essential in realizing quantum computation and quantum communication. Here we experimentally demonstrate that decoherence due to amplitude damping can be suppressed by exploiting quantum measurement reversal in which a weak meas urement and the reversing measurement are introduced before and after the decoherence channel, respectively. We have also investigated the trade-off relation between the degree of decoherence suppression and the channel transmittance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا