ﻻ يوجد ملخص باللغة العربية
We present a comprehensive analysis of the formation and evolution of a fan-spine-like configuration that developed over a complex photospheric configuration where dispersed negative polarity regions were surrounded by positive polarity regions. This unique photospheric configuration, analogous to the geological atoll shape, hosted four homologous flares within its boundary. Computation of the degree of squashing factor (Q) maps clearly revealed an elongated region of high Q-values between the inner and outer spine-like lines, implying the presence of an hyperbolic flux tube (HFT). The coronal region associated with the photospheric atoll configuration was distinctly identified in the form of a diffused dome-shaped bright structure directly observed in EUV images. A filament channel resided near the boundary of the atoll region. The activation and eruption of flux ropes from the filament channel led to the onset of four eruptive homologous quasi-circular ribbon flares within an interval of $approx$11 hours. During the interval of the four flares, we observed continuous decay and cancellation of negative polarity flux within the atoll region. Accordingly, the apparent length of the HFT gradually reduced to a null-point-like configuration before the fourth flare. Prior to each flare, we observed localised brightening beneath the filaments which, together with flux cancellation, provided support for the tether-cutting model of solar eruption. The analysis of magnetic decay index revealed favourable conditions for the eruption, once the pre-activated flux ropes attained the critical heights for torus instability.
We present a detailed study of a confined circular flare dynamics associated with 3 UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. We perform a non-linear
Solar flares with a fan-spine magnetic topology can form circular ribbons. The previous study based on Halpha line observations of the solar flares during March 05, 2014 by Xu et al. (2017) revealed uniform and continuous rotation of the magnetic fan
Magnetic flux ropes play a key role in triggering solar flares in the solar atmosphere. In this paper, we investigate the evolution of active region NOAA 12268 within 36 hours from 2015 January 29 to 30, during which a flux rope was formed and three
Coronal magnetic flux ropes are generally considered to be the core structure of large-scale solar eruptions. Recent observations found that solar eruptions could be initiated by a sequence of flux feeding, during which chromospheric fibrils rise upw
In this study, we investigated the energy partition of four confined circular-ribbon flares (CRFs) near the solar disk center, which are observed simultaneously by SDO, GOES, and RHESSI. We calculated different energy components, including the radiat