ترغب بنشر مسار تعليمي؟ اضغط هنا

Successive occurrences of quasi-circular ribbon flares in a fan-spine-like configuration involving hyperbolic flux tube

71   0   0.0 ( 0 )
 نشر من قبل Prabir Mitra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Prabir K. Mitra




اسأل ChatGPT حول البحث

We present a comprehensive analysis of the formation and evolution of a fan-spine-like configuration that developed over a complex photospheric configuration where dispersed negative polarity regions were surrounded by positive polarity regions. This unique photospheric configuration, analogous to the geological atoll shape, hosted four homologous flares within its boundary. Computation of the degree of squashing factor (Q) maps clearly revealed an elongated region of high Q-values between the inner and outer spine-like lines, implying the presence of an hyperbolic flux tube (HFT). The coronal region associated with the photospheric atoll configuration was distinctly identified in the form of a diffused dome-shaped bright structure directly observed in EUV images. A filament channel resided near the boundary of the atoll region. The activation and eruption of flux ropes from the filament channel led to the onset of four eruptive homologous quasi-circular ribbon flares within an interval of $approx$11 hours. During the interval of the four flares, we observed continuous decay and cancellation of negative polarity flux within the atoll region. Accordingly, the apparent length of the HFT gradually reduced to a null-point-like configuration before the fourth flare. Prior to each flare, we observed localised brightening beneath the filaments which, together with flux cancellation, provided support for the tether-cutting model of solar eruption. The analysis of magnetic decay index revealed favourable conditions for the eruption, once the pre-activated flux ropes attained the critical heights for torus instability.

قيم البحث

اقرأ أيضاً

273 - S. Masson , E. Pariat , G. Valori 2017
We present a detailed study of a confined circular flare dynamics associated with 3 UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. We perform a non-linear force free field extrapolation of the confined flare observed with the HMI and AIA instruments onboard SDO. From the 3D magnetic field we compute the squashing factor and we analyse its distribution. Conjointly, we analyse the AIA EUV light curves and images in order to identify the post-flare loops, their temporal and thermal evolution. By combining both analysis we are able to propose a detailed scenario that explains the dynamics of the flare. Our topological analysis shows that in addition to a null-point topology with the fan separatrix, the spine lines and its surrounding Quasi-Separatix Layers halo (typical for a circular flare), a flux rope and its hyperbolic flux tube (HFT) are enclosed below the null. By comparing the magnetic field topology and the EUV post-flare loops we obtain an almost perfect match 1) between the footpoints of the separatrices and the EUV 1600~AA{} ribbons and 2) between the HFTs field line footpoints and bright spots observed inside the circular ribbons. We showed, for the first time in a confined flare, that magnetic reconnection occured initially at the HFT, below the flux rope. Reconnection at the null point between the flux rope and the overlying field is only initiated in a second phase. In addition, we showed that the EUV late phase observed after the main flare episode are caused by the cooling loops of different length which have all reconnected at the null point during the impulsive phase.
Solar flares with a fan-spine magnetic topology can form circular ribbons. The previous study based on Halpha line observations of the solar flares during March 05, 2014 by Xu et al. (2017) revealed uniform and continuous rotation of the magnetic fan -spine. Preliminary analysis of the flare time profiles revealed quasi-periodic pulsations (QPPs) with similar properties in hard X-rays, Halpha, and microwaves. In this work, we address which process the observed periodicities are related to: periodic acceleration of electrons or plasma heating? QPPs are analysed in the Halpha emission from the centre of the fan (inner ribbon R1), a circular ribbon (R2), a remote source (R3), and an elongated ribbon (R4) located between R2 and R3. The methods of correlation, Fourier, wavelet, and empirical mode decomposition are used. QPPs in Halpha emission are compared with those in microwave and X-ray emission. We found multi-wavelength QPPs with periods around 150 s, 125 s, and 190 s. The 150-s period is seen to co-exist in Halpha, hard X-rays, and microwave emissions, that allowed us to connect it with flare kernels R1 and R2. These kernels spatially coincide with the site of the primary flare energy release. The 125-s period is found in the Halpha emission of the elongated ribbon R4 and the microwave emission at 5.7 GHz during the decay phase. The 190-s period is present in the emission during all flare phases in the Halpha emission of both the remote source R3 and the elongated ribbon R4, in soft X-rays, and microwaves at 4--8 GHz. We connected the dominant 150-s QPPs with the slipping reconnection mechanism occurring in the fan. We suggested that the period of 125 s in the elongated ribbon can be caused by a kink oscillation of the outer spine connecting the primary reconnection site with the remote footpoint. The period of 190 s is associated with the 3-min sunspot oscillations.
116 - Z. Zhong , Y. Guo , M. D. Ding 2018
Magnetic flux ropes play a key role in triggering solar flares in the solar atmosphere. In this paper, we investigate the evolution of active region NOAA 12268 within 36 hours from 2015 January 29 to 30, during which a flux rope was formed and three M-class and three C-class flares were triggered without coronal mass ejections. During the evolution of the active region, the flare emission seen in the H$alpha$ and ultraviolet wavebands changed from a circular shape (plus an adjacent conjugated ribbon and a remote ribbon) to three relatively straight and parallel ribbons. Based on a series of reconstructed nonlinear force-free fields, we find sheared or twisted magnetic field lines and a large-scale quasi-separatrix layer (QSL) associated with 3D null points in a quadrupolar magnetic field. These features always existed and constantly evolved during the two days. The twist of the flux rope was gradually accumulated that eventually led to its instability. Around the flux rope, there were some topological structures, including a bald patch, a hyperbolic flux tube and a torus QSL. We discuss how the particular magnetic structure and its evolution produce the flare emission. In particular, the bifurcation of the flux rope can explain the transition of the flares from circular to parallel ribbons. We propose a two-stage evolution of the magnetic structure and its associated flares. In the first stage, sheared arcades under the dome-like large-scale QSL were gradually transformed into a flux rope through magnetic reconnection, which produced the circular ribbon flare. In the second stage, the flux rope bifurcated to form the three relatively straight and parallel flare ribbons.
Coronal magnetic flux ropes are generally considered to be the core structure of large-scale solar eruptions. Recent observations found that solar eruptions could be initiated by a sequence of flux feeding, during which chromospheric fibrils rise upw ard from below, and merge with a pre-existing prominence. Further theoretical study has confirmed that the flux feeding mechanism is efficient in causing the eruption of flux ropes that are wrapped by bald patch separatrix surfaces. But it is unclear how flux feeding influences coronal flux ropes that are wrapped by hyperbolic flux tubes (HFT), and whether it is able to cause the flux-rope eruption. In this paper, we use a 2.5-dimensional magnetohydrodynamic model to simulate the flux feeding processes in HFT configurations. It is found that flux feeding injects axial magnetic flux into the flux rope, whereas the poloidal flux of the rope is reduced after flux feeding. Flux feeding is able to cause the flux rope to erupt, provided that the injected axial flux is large enough so that the critical axial flux of the rope is reached. Otherwise, the flux rope system evolves to a stable equilibrium state after flux feeding, which might be even farther away from the onset of the eruption, indicating that flux feeding could stabilize the rope system with the HFT configuration in this circumstance.
In this study, we investigated the energy partition of four confined circular-ribbon flares (CRFs) near the solar disk center, which are observed simultaneously by SDO, GOES, and RHESSI. We calculated different energy components, including the radiat ive outputs in 1$-$8, 1$-$70, and 70$-$370 {AA}, total radiative loss, peak thermal energy derived from GOES and RHESSI, nonthermal energy in flare-accelerated electrons, and magnetic free energy before flares. It is found that the energy components increase systematically with the flare class, indicating that more energies are involved in larger flares. The magnetic free energies are larger than the nonthermal energies and radiative outputs of flares, which is consistent with the magnetic nature of flares. The ratio $frac{E_{nth}}{E_{mag}}$ of the four flares, being 0.70$-$0.76, is considerably higher than that of eruptive flares. Hence, this ratio may serve as an important factor that discriminates confined and eruptive flares. The nonthermal energies are sufficient to provide the heating requirements including the peak thermal energy and radiative loss. Our findings impose constraint on theoretical models of confined CRFs and have potential implication for the space weather forecast.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا