ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Readability of Abstract Set Visualizations

90   0   0.0 ( 0 )
 نشر من قبل Markus Wallinger
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Set systems are used to model data that naturally arises in many contexts: social networks have communities, musicians have genres, and patients have symptoms. Visualizations that accurately reflect the information in the underlying set system make it possible to identify the set elements, the sets themselves, and the relationships between the sets. In static contexts, such as print media or infographics, it is necessary to capture this information without the help of interactions. With this in mind, we consider three different systems for medium-sized set data, LineSets, EulerView, and MetroSets, and report the results of a controlled human-subjects experiment comparing their effectiveness. Specifically, we evaluate the performance, in terms of time and error, on tasks that cover the spectrum of static set-based tasks. We also collect and analyze qualitative data about the three different visualization systems. Our results include statistically significant differences, suggesting that MetroSets performs and scales better.



قيم البحث

اقرأ أيضاً

Feedback tools help people to monitor information about themselves to improve their health, sustainability practices, or personal well-being. Yet reasoning about personal data (e.g., pedometer counts, blood pressure readings, or home electricity cons umption) to gain a deep understanding of your current practices and how to change can be challenging with the data alone. We integrate quantitative feedback data within a personal digital calendar; this approach aims to make the feedback data readily accessible and more comprehensible. We report on an eight-week field study of an on-calendar visualization tool. Results showed that a personal calendar can provide rich context for people to reason about their feedback data. The on-calendar visualization enabled people to quickly identify and reason about regular patterns and anomalies. Based on our results, we also derived a model of the behavior feedback process that extends existing technology adoption models. With that, we reflected on potential barriers for the ongoing use of feedback tools.
Readability is on the cusp of a revolution. Fixed text is becoming fluid as a proliferation of digital reading devices rewrite what a document can do. As past constraints make way for more flexible opportunities, there is great need to understand how reading formats can be tuned to the situation and the individual. We aim to provide a firm foundation for readability research, a comprehensive framework for modern, multi-disciplinary readability research. Readability refers to aspects of visual information design which impact information flow from the page to the reader. Readability can be enhanced by changes to the set of typographical characteristics of a text. These aspects can be modified on-demand, instantly improving the ease with which a reader can process and derive meaning from text. We call on a multi-disciplinary research community to take up these challenges to elevate reading outcomes and provide the tools to do so effectively.
In response to COVID-19, a vast number of visualizations have been created to communicate information to the public. Information exposure in a public health crisis can impact peoples attitudes towards and responses to the crisis and risks, and ultima tely the trajectory of a pandemic. As such, there is a need for work that documents, organizes, and investigates what COVID-19 visualizations have been presented to the public. We address this gap through an analysis of 668 COVID-19 visualizations. We present our findings through a conceptual framework derived from our analysis, that examines who, (uses) what data, (to communicate) what messages, in what form, under what circumstances in the context of COVID-19 crisis visualizations. We provide a set of factors to be considered within each component of the framework. We conclude with directions for future crisis visualization research.
Leveraging hypergraph structures to model advanced processes has gained much attention over the last few years in many areas, ranging from protein-interaction in computational biology to image retrieval using machine learning. Hypergraph models can p rovide a more accurate representation of the underlying processes while reducing the overall number of links compared to regular representations. However, interactive visualization methods for hypergraphs and hypergraph-based models have rarely been explored or systematically analyzed. This paper reviews the existing research landscape for hypergraph and hypergraph model visualizations and assesses the currently employed techniques. We provide an overview and a categorization of proposed approaches, focusing on performance, scalability, interaction support, successful evaluation, and the ability to represent different underlying data structures, including a recent demand for a temporal representation of interaction networks and their improvements beyond graph-based methods. Lastly, we discuss the strengths and weaknesses of the approaches and give an insight into the future challenges arising in this emerging research field.
Scatterplots are one of the simplest and most commonly-used visualizations for understanding quantitative, multidimensional data. However, since scatterplots only depict two attributes at a time, analysts often need to manually generate and inspect l arge numbers of scatterplots to make sense of large datasets with many attributes. We present a visual query system for scatterplots, SCATTERSEARCH, that enables users to visually search and browse through large collections of scatterplots. Users can query for other visualizations based on a region of interest or find other scatterplots that look similar to a selected one. We present two demo scenarios, provide a system overview of SCATTERSEARCH, and outline future directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا