ترغب بنشر مسار تعليمي؟ اضغط هنا

1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

181   0   0.0 ( 0 )
 نشر من قبل Jiasheng Tang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the classical tracking-by-detection paradigm to this tracking-any-object task. Solid detection results are first extracted from TAO dataset. Some state-of-the-art techniques like textbf{BA}lanced-textbf{G}roup textbf{S}oftmax (textbf{BAGS}cite{li2020overcoming}) and DetectoRScite{qiao2020detectors} are integrated during detection. Then we learned appearance features to represent any object by training feature learning networks. We ensemble several models for improving detection and feature representation. Simple linking strategies with most similar appearance features and tracklet-level post association module are finally applied to generate final tracking results. Our method is submitted as textbf{AOA} on the challenge website. Code is available at https://github.com/feiaxyt/Winner_ECCV20_TAO.

قيم البحث

اقرأ أيضاً

For many years, multi-object tracking benchmarks have focused on a handful of categories. Motivated primarily by surveillance and self-driving applications, these datasets provide tracks for people, vehicles, and animals, ignoring the vast majority o f objects in the world. By contrast, in the related field of object detection, the introduction of large-scale, diverse datasets (e.g., COCO) have fostered significant progress in developing highly robust solutions. To bridge this gap, we introduce a similarly diverse dataset for Tracking Any Object (TAO). It consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average. Importantly, we adopt a bottom-up approach for discovering a large vocabulary of 833 categories, an order of magnitude more than prior tracking benchmarks. To this end, we ask annotators to label objects that move at any point in the video, and give names to them post factum. Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets. To ensure scalability of annotation, we employ a federated approach that focuses manual effort on labeling tracks for those relevant objects in a video (e.g., those that move). We perform an extensive evaluation of state-of-the-art trackers and make a number of important discoveries regarding large-vocabulary tracking in an open-world. In particular, we show that existing single- and multi-object trackers struggle when applied to this scenario in the wild, and that detection-based, multi-object trackers are in fact competitive with user-initialized ones. We hope that our dataset and analysis will boost further progress in the tracking community.
This paper presents our proposed methods for domain adaptive pedestrian re-identification (Re-ID) task in Visual Domain Adaptation Challenge (VisDA-2020). Considering the large gap between the source domain and target domain, we focused on solving tw o biases that influenced the performance on domain adaptive pedestrian Re-ID and proposed a two-stage training procedure. At the first stage, a baseline model is trained with images transferred from source domain to target domain and from single camera to multiple camera styles. Then we introduced a domain adaptation framework to train the model on source data and target data simultaneously. Different pseudo label generation strategies are adopted to continuously improve the discriminative ability of the model. Finally, with multiple models ensembled and additional post processing approaches adopted, our methods achieve 76.56% mAP and 84.25% rank-1 on the test set. Codes are available at https://github.com/vimar-gu/Bias-Eliminate-DA-ReID
In this technical report, we present key details of our winning panoptic segmentation architecture EffPS_b1bs4_RVC. Our network is a lightweight version of our state-of-the-art EfficientPS architecture that consists of our proposed shared backbone wi th a modified EfficientNet-B5 model as the encoder, followed by the 2-way FPN to learn semantically rich multi-scale features. It consists of two task-specific heads, a modified Mask R-CNN instance head and our novel semantic segmentation head that processes features of different scales with specialized modules for coherent feature refinement. Finally, our proposed panoptic fusion module adaptively fuses logits from each of the heads to yield the panoptic segmentation output. The Robust Vision Challenge 2020 benchmarking results show that our model is ranked #1 on Microsoft COCO, VIPER and WildDash, and is ranked #2 on Cityscapes and Mapillary Vistas, thereby achieving the overall rank #1 for the panoptic segmentation task.
In this technical report, we present our 1st place solution for the ICDAR 2021 competition on mathematical formula detection (MFD). The MFD task has three key challenges including a large scale span, large variation of the ratio between height and wi dth, and rich character set and mathematical expressions. Considering these challenges, we used Generalized Focal Loss (GFL), an anchor-free method, instead of the anchor-based method, and prove the Adaptive Training Sampling Strategy (ATSS) and proper Feature Pyramid Network (FPN) can well solve the important issue of scale variation. Meanwhile, we also found some tricks, e.g., Deformable Convolution Network (DCN), SyncBN, and Weighted Box Fusion (WBF), were effective in MFD task. Our proposed method ranked 1st in the final 15 teams.
This article introduces the solutions of the team lvisTraveler for LVIS Challenge 2020. In this work, two characteristics of LVIS dataset are mainly considered: the long-tailed distribution and high quality instance segmentation mask. We adopt a two- stage training pipeline. In the first stage, we incorporate EQL and self-training to learn generalized representation. In the second stage, we utilize Balanced GroupSoftmax to promote the classifier, and propose a novel proposal assignment strategy and a new balanced mask loss for mask head to get more precise mask predictions. Finally, we achieve 41.5 and 41.2 AP on LVIS v1.0 val and test-dev splits respectively, outperforming the baseline based on X101-FPN-MaskRCNN by a large margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا