ﻻ يوجد ملخص باللغة العربية
Self mixing interferometry is a well established interferometric measurement technique. In spite of the robustness and simplicity of the concept, interpreting the self-mixing signal is often complicated in practice, which is detrimental to measurement availability. Here we discuss the use of a convolutional neural network to reconstruct the displacement of a target from the self mixing signal in a semiconductor laser. The network, once trained on periodic displacement patterns, can reconstruct arbitrarily complex displacement in different alignment conditions and setups. The approach validated here is amenable to generalization to modulated schemes or even to totally different self mixing sensing tasks.
Two dimensional (2D) peak finding is a common practice in data analysis for physics experiments, which is typically achieved by computing the local derivatives. However, this method is inherently unstable when the local landscape is complicated, or t
We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the nee
Selection of the correct convergence angle is essential for achieving the highest resolution imaging in scanning transmission electron microscopy (STEM). Use of poor heuristics, such as Rayleighs quarter-phase rule, to assess probe quality and uncert
We explore the application of a Convolutional Neural Network (CNN) to image the shear modulus field of an almost incompressible, isotropic, linear elastic medium in plane strain using displacement or strain field data. This problem is important in me
During a tokamak discharge, the plasma can vary between different confinement regimes: Low (L), High (H) and, in some cases, a temporary (intermediate state), called Dithering (D). In addition, while the plasma is in H mode, Edge Localized Modes (ELM