ترغب بنشر مسار تعليمي؟ اضغط هنا

Presence versus absence of Two-Dimensional Fermi Surface Anomalies

72   0   0.0 ( 0 )
 نشر من قبل DinhDuy Vu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically consider Fermi surface anomalies manifesting in the temperature dependent quasiparticle properties of two-dimensional (2D) interacting electron systems, comparing and contrasting with the corresponding 3D Fermi liquid situation. In particular, employing microscopic many body perturbative techniques, we obtain analytically the leading-order and the next-to-leading-order interaction corrections to the renormalized effective mass for three distinct physical interaction models: electron-phonon, electron-paramagnon, and electron-electron Coulomb coupling. We find that the 2D renormalized effective mass does not develop any Fermi surface anomaly due to electron-phonon interaction, manifesting $mathcal{O}(T^2)$ temperature correction and thus remaining consistent with the Sommerfeld expansion of the non-interacting Fermi function, in contrast to the corresponding 3D situation where the temperature correction to the renormalized effective mass has the anomalous $T^2 log T$ behavior. By contrast, both electron-paramagnon and electron-electron interactions lead to the anomalous $mathcal{O}(T)$ corrections to the 2D effective mass renormalization in contrast to $T^2 log T$ behavior in the corresponding 3D interacting systems. We provide detailed analytical results, and comment on the conditions under which a $T^2 log T$ term could possibly arise in the 2D quasiparticle effective mass from electron-phonon interactions. We also compare results for the temperature dependent specific heat in the interacting 2D and 3D Fermi systems, using the close connection between the effective mass and specific heat.

قيم البحث

اقرأ أيضاً

We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case th at, in the absence of RSF, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder CCF still exhibit scaling, acquiring a random field scaling variable $w$ which is zero for pure systems. We confirm these analytic predictions by MC simulations. Moreover, our MC data show that $f_{mathrm C}$ varies as $f_{mathrm C}(wto 0)-f_{mathrm C}(w=0)sim w^2$. Asymptotically, for large $L$, $w$ scales as $w sim L^{-0.26} to 0$ indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that $w simeq 1$, we find that the presence of RSF with vanishing mean value increases significantly the strength of CCF, as compared to systems without them, and shifts the extremum of the scaling function of $f_{mathrm C}$ towards lower temperatures. But $f_{mathrm C}$ remains attractive.
We study the influence of a dissipation process on diffusion dynamics triggered by slow fluctuations. We study both strong- and weak-friction regime. When the latter regime applies, the system is attracted by the basin of either Gauss or Levy statist ics according to whether the fluctuation correlation function is integrable or not. We analyze with a numerical calculation the border between the two basins of attraction.
We provide general formulae for the configurational exponents of an arbitrary polymer network connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to assume a general mixture of boundary conditions on either side of the wedge. We report on a comprehensive study of a linear chain by exact enumeration, with various attachments of the walks ends to the surface, in wedges of angles $pi/2$ and $pi$, with general mixed boundary conditions.
129 - M. Pleimling 2004
In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated e ffective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure systems critical behaviour.
We report on a combined study of the de Haas-van Alphen effect and angle resolved photoemission spectroscopy on single crystals of the metallic delafossite PdRhO$_2$ rounded off by textit{ab initio} band structure calculations. A high sensitivity tor que magnetometry setup with SQUID readout and synchrotron-based photoemission with a light spot size of $~50,mumathrm{m}$ enabled high resolution data to be obtained from samples as small as $150times100times20,(mumathrm{m})^3$. The Fermi surface shape is nearly cylindrical with a rounded hexagonal cross section enclosing a Luttinger volume of 1.00(1) electrons per formula unit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا